Oracle® Database Utilities 11g Release 2 (11.2) Part Number E10701-02 |
|
|
View PDF |
This chapter describes the ORACLE_DATAPUMP
access driver. The following topics are discussed:
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
Performance Hints When Using the ORACLE_DATAPUMP Access Driver
To use the information in this chapter, you must know enough about SQL to be able to create an external table and perform queries against it.
Notes:
It is sometimes difficult to describe syntax without using other syntax that is not documented until later in the chapter. If it is not clear what some syntax is supposed to do, you might want to skip ahead and read about that particular element.
When identifiers (for example, column or table names) are specified in the external table access parameters, certain values are considered to be reserved words by the access parameter parser. If a reserved word is used as an identifier, it must be enclosed in double quotation marks. See Reserved Words for the ORACLE_DATAPUMP Access Driver.
When you create the external table, you can specify certain parameters in an access_parameters
clause. This clause is optional, as are its individual parameters. For example, you could specify LOGFILE
, but not VERSION
, or vice versa. The syntax for the access_parameters
clause is as follows.
Note:
These access parameters are collectively referred to as theopaque_format_spec
in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.Comments are lines that begin with two hyphens followed by text. Comments must be placed before any access parameters, for example:
--This is a comment. --This is another comment. NOLOG
All text to the right of the double hyphen is ignored, until the end of the line.
Default: DISABLED
Purpose
Specifies whether to compress data before it is written to the dump file set.
Syntax and Description
COMPRESSION=[ENABLED | DISABLED]
If ENABLED
is specified, then all data is compressed for the entire upload operation.
If DISABLED
is specified, then no data is compressed for the upload operation.
Example
In the following example, the COMPRESSION
parameter is set to ENABLED
. Therefore, all data written to the dept.dmp
dump file will be in compressed format.
CREATE TABLE table deptXTec3 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('dept.dmp'));
Default: DISABLED
Purpose
Specifies whether to encrypt data before it is written to the dump file set.
Syntax and Description
ENCRYPTION=[ENABLED | DISABLED]
If ENABLED
is specified, then all data is written to the dump file set in encrypted format.
If DISABLED
is specified, then no data is written to the dump file set in encrypted format.
Restrictions
This parameter is used only for export operations.
Example
In the following example, the ENCRYPTION
parameter is set to ENABLED
. Therefore, all data written to the dept.dmp
file will be in encrypted format.
CREATE TABLE deptXTec3 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('dept.dmp'));
Default: If LOGFILE
is not specified, a log file is created in the default directory and the name of the log file is generated from the table name and the process ID with an extension of .log
. If a log file already exists by the same name, the access driver reopens that log file and appends the new log information to the end.
Purpose
LOGFILE
specifies the name of the log file that contains any messages generated while the dump file was being accessed. NOLOGFILE
prevents the creation of a log file.
Syntax and Description
NOLOGFILE
or
LOGFILE=[directory_object:]logfile_name
If a directory object is not specified as part of the log file name, then the directory object specified by the DEFAULT
DIRECTORY
attribute is used. If a directory object is not specified and no default directory was specified, an error is returned. See File Names for LOGFILE for information about using wildcards to create unique file names during parallel loads or unloads
Example
In the following example, the dump file, dept_dmp
, is in the directory identified by the directory object, load_dir
, but the log file, deptxt
.log
, is in the directory identified by the directory object, log_dir
.
CREATE TABLE dept_xt (dept_no INT, dept_name CHAR(20), location CHAR(20)) ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY load_dir ACCESS PARAMETERS (LOGFILE log_dir:deptxt) LOCATION ('dept_dmp'));
The access driver does some symbol substitution to help make file names unique in the case of parallel loads. The symbol substitutions supported are as follows:
%p
is replaced by the process ID of the current process. For example, if the process ID of the access driver is 12345, then exttab_%p
.log
becomes exttab_12345.log
.
%a
is replaced by the agent number of the current process. The agent number is the unique number assigned to each parallel process accessing the external table. This number is padded to the left with zeros to fill three characters. For example, if the third parallel agent is creating a file and exttab_%a
.log
was specified as the file name, then the agent would create a file named exttab_003.log
.
%%
is replaced by '%
'. If there is a need to have a percent sign in the file name, then this symbol substitution must be used.
If the '%
' character is followed by anything other than one of the characters in the preceding list, then an error is returned.
If %p
or %a
is not used to create unique file names for output files and an external table is being accessed in parallel, output files may be corrupted or agents may be unable to write to the files.
If no extension is supplied for the file, a default extension of .log
will be used. If the name generated is not a valid file name, an error is returned and no data is loaded or unloaded.
The VERSION
clause is used to specify the minimum version of Oracle Database that will be reading the dump file. If you specify a version of 11.1, then both 11.1 and 11.2 databases can read the dump file. If you specify a version of 11.2, then only 11.2 databases can read the dump file.
The default value is COMPATIBLE
.
If you specify the SQL ENCRYPT
clause when you create an external table, keep the following in mind:
The columns for which you specify the ENCRYPT
clause will be encrypted before being written into the dump file.
If you move the dump file to another database, then the same encryption password must be used for both the encrypted columns in the dump file and for the external table used to read the dump file.
If you do not specify a password for the correct encrypted columns in the external table on the second database, you will get an error. If you do not specify the correct password, you will get garbage data in the dump file.
The dump file that is produced must be at version 10.2 or higher. Otherwise, an error is returned.
See Also:
Oracle Database SQL Language Reference for more information about using theENCRYPT
clause on a CREATE TABLE
statementAs part of creating an external table with a SQL CREATE TABLE AS SELECT
statement, the ORACLE_DATAPUMP
access driver can write data to a dump file. The data in the file is written in a binary format that can only be read by the ORACLE_DATAPUMP
access driver. Once the dump file is created, it cannot be modified (that is, no data manipulation language (DML) operations can be performed on it). However, the file can be read any number of times and used as the dump file for another external table in the same database or in a different database.
The following steps use the sample schema, oe
, to show an extended example of how you can use the ORACLE_DATAPUMP
access driver to unload and load data. (The example assumes that the directory object def_dir1
already exists, and that user oe
has read and write access to it.)
An external table will populate a file with data only as part of creating the external table with the AS
SELECT
clause. The following example creates an external table named inventories_xt
and populates the dump file for the external table with the data from table inventories
in the oe
schema.
SQL> CREATE TABLE inventories_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_xt.dmp') 7 ) 8 AS SELECT * FROM inventories; Table created.
Describe both inventories
and the new external table, as follows. They should both match.
SQL> DESCRIBE inventories Name Null? Type ---------------------------------------- --------- ---------------- PRODUCT_ID NOT NULL NUMBER(6) WAREHOUSE_ID NOT NULL NUMBER(3) QUANTITY_ON_HAND NOT NULL NUMBER(8) SQL> DESCRIBE inventories_xt Name Null? Type ----------------------------------------- -------- ----------------- PRODUCT_ID NOT NULL NUMBER(6) WAREHOUSE_ID NOT NULL NUMBER(3) QUANTITY_ON_HAND NOT NULL NUMBER(8)
Now that the external table is created, it can be queried just like any other table. For example, select the count of records in the external table, as follows:
SQL> SELECT COUNT(*) FROM inventories_xt; COUNT(*) ---------- 1112
Compare the data in the external table against the data in inventories
. There should be no differences.
SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt; no rows selected
After an external table has been created and the dump file populated by the CREATE
TABLE
AS
SELECT
statement, no rows may be added, updated, or deleted from the external table. Any attempt to modify the data in the external table will fail with an error.
The following example shows an attempt to use data manipulation language (DML) on an existing external table. This will return an error, as shown.
SQL> DELETE FROM inventories_xt WHERE warehouse_id = 5; DELETE FROM inventories_xt WHERE warehouse_id = 5 * ERROR at line 1: ORA-30657: operation not supported on external organized table
The dump file created for the external table can now be moved and used as the dump file for another external table in the same database or different database. Note that when you create an external table that uses an existing file, there is no AS
SELECT
clause for the CREATE
TABLE
statement.
SQL> CREATE TABLE inventories_xt2 2 ( 3 product_id NUMBER(6), 4 warehouse_id NUMBER(3), 5 quantity_on_hand NUMBER(8) 6 ) 7 ORGANIZATION EXTERNAL 8 ( 9 TYPE ORACLE_DATAPUMP 10 DEFAULT DIRECTORY def_dir1 11 LOCATION ('inv_xt.dmp') 12 ); Table created.
Compare the data for the new external table against the data in the inventories
table. The product_id
field will be converted to a compatible datatype before the comparison is done. There should be no differences.
SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt2; no rows selected
Create an external table with three dump files and with a degree of parallelism of three.
SQL> CREATE TABLE inventories_xt3 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp') 7 ) 8 PARALLEL 3 9 AS SELECT * FROM inventories; Table created.
Compare the data unload against inventories
. There should be no differences.
SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt3; no rows selected
Create an external table containing some rows from table inventories
.
SQL> CREATE TABLE inv_part_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_p1_xt.dmp') 7 ) 8 AS SELECT * FROM inventories WHERE warehouse_id < 5; Table created.
Create another external table containing the rest of the rows from inventories
.
SQL> drop table inv_part_xt; Table dropped. SQL> SQL> CREATE TABLE inv_part_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_p2_xt.dmp') 7 ) 8 AS SELECT * FROM inventories WHERE warehouse_id >= 5; Table created.
Create an external table that uses the two dump files created in Steps 10 and 11.
SQL> CREATE TABLE inv_part_all_xt 2 ( 3 product_id NUMBER(6), 4 warehouse_id NUMBER(3), 5 quantity_on_hand NUMBER(8) 6 ) 7 ORGANIZATION EXTERNAL 8 ( 9 TYPE ORACLE_DATAPUMP 10 DEFAULT DIRECTORY def_dir1 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp') 12 ); Table created.
Compare the new external table to the inventories
table. There should be no differences. This is because the two dump files used to create the external table have the same metadata (for example, the same table name inv_part_xt
and the same column information)
SQL> SELECT * FROM inventories MINUS SELECT * FROM inv_part_all_xt; no rows selected
The dump file must be on a disk big enough to hold all the data being written. If there is insufficient space for all of the data, then an error will be returned for the CREATE
TABLE
AS
SELECT
statement. One way to alleviate the problem is to create multiple files in multiple directory objects (assuming those directories are on different disks) when executing the CREATE
TABLE
AS
SELECT
statement. Multiple files can be created by specifying multiple locations in the form directory:file
in the LOCATION
clause and by specifying the PARALLEL
clause. Each parallel I/O server process that is created to populate the external table writes to its own file. The number of files in the LOCATION
clause should match the degree of parallelization because each I/O server process requires its own files. Any extra files that are specified will be ignored. If there are not enough files for the degree of parallelization specified, then the degree of parallelization will be lowered to match the number of files in the LOCATION
clause.
Here is an example of unloading the inventories
table into three files.
SQL> CREATE TABLE inventories_XT_3 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp') 7 ) 8 PARALLEL 3 9 AS SELECT * FROM oe.inventories; Table created.
When the ORACLE_DATAPUMP
access driver is used to load data, parallel processes can read multiple dump files or even chunks of the same dump file concurrently. Thus, data can be loaded in parallel even if there is only one dump file, as long as that file is large enough to contain multiple file offsets. The degree of parallelization is not tied to the number of files in the LOCATION
clause when reading from ORACLE_DATAPUMP
external tables.
Dump files populated by different external tables can all be specified in the LOCATION
clause of another external table. For example, data from different production databases can be unloaded into separate files, and then those files can all be included in an external table defined in a data warehouse. This provides an easy way of aggregating data from multiple sources. The only restriction is that the metadata for all of the external tables be exactly the same. This means that the character set, time zone, schema name, table name, and column names must all match. Also, the columns must be defined in the same order, and their datatypes must be exactly alike. This means that after you create the first external table you must drop it so that you can use the same table name for the second external table. This ensures that the metadata listed in the two dump files is the same and they can be used together to create the same external table.
SQL> CREATE TABLE inv_part_1_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_p1_xt.dmp') 7 ) 8 AS SELECT * FROM oe.inventories WHERE warehouse_id < 5; Table created. SQL> DROP TABLE inv_part_1_xt; SQL> CREATE TABLE inv_part_1_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT directory def_dir1 6 LOCATION ('inv_p2_xt.dmp') 7 ) 8 AS SELECT * FROM oe.inventories WHERE warehouse_id >= 5; Table created. SQL> CREATE TABLE inv_part_all_xt 2 ( 3 PRODUCT_ID NUMBER(6), 4 WAREHOUSE_ID NUMBER(3), 5 QUANTITY_ON_HAND NUMBER(8) 6 ) 7 ORGANIZATION EXTERNAL 8 ( 9 TYPE ORACLE_DATAPUMP 10 DEFAULT DIRECTORY def_dir1 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp') 12 ); Table created. SQL> SELECT * FROM inv_part_all_xt MINUS SELECT * FROM oe.inventories; no rows selected
You may encounter the following situations when you use external tables to move data between databases:
The database character set and the database national character set may be different between the two platforms.
The endianness of the platforms for the two databases may be different.
The ORACLE_DATAPUMP
access driver automatically resolves some of these situations.
The following datatypes are automatically converted during loads and unloads:
Character (CHAR
, NCHAR
, VARCHAR2
, NVARCHAR2
)
RAW
NUMBER
Date/Time
BLOB
CLOB
and NCLOB
ROWID
and UROWID
If you attempt to use a datatype that is not supported for external tables, you will receive an error. This is demonstrated in the following example, in which the unsupported datatype, LONG
, is used:
SQL> CREATE TABLE bad_datatype_xt 2 ( 3 product_id NUMBER(6), 4 language_id VARCHAR2(3), 5 translated_name NVARCHAR2(50), 6 translated_description LONG 7 ) 8 ORGANIZATION EXTERNAL 9 ( 10 TYPE ORACLE_DATAPUMP 11 DEFAULT DIRECTORY def_dir1 12 LOCATION ('proddesc.dmp') 13 ); translated_description LONG * ERROR at line 6: ORA-30656: column type not supported on external organized table
See Also:
Unsupported DatatypesAn external table supports a subset of all possible datatypes for columns. In particular, it supports character datatypes (except LONG
), the RAW
datatype, all numeric datatypes, and all date, timestamp, and interval datatypes.
This section describes how you can use the ORACLE_DATAPUMP
access driver to unload and reload data for some of the unsupported datatypes, specifically:
BFILE
LONG
and LONG
RAW
Final object types
Tables of final object types
The BFILE
datatype has two pieces of information stored in it: the directory object for the file and the name of the file within that directory object.
You can unload BFILE
columns using the ORACLE_DATAPUMP
access driver by storing the directory object name and the file name in two columns in the external table. The procedure DBMS_LOB
.FILEGETNAME
will return both parts of the name. However, because this is a procedure, it cannot be used in a SELECT
statement. Instead, two functions are needed. The first will return the name of the directory object, and the second will return the name of the file.
The steps in the following extended example demonstrate the unloading and loading of BFILE
datatypes.
Create a function to extract the directory object for a BFILE
column. Note that if the column is NULL
, then NULL
is returned.
SQL> CREATE FUNCTION get_dir_name (bf BFILE) RETURN VARCHAR2 IS 2 DIR_ALIAS VARCHAR2(255); 3 FILE_NAME VARCHAR2(255); 4 BEGIN 5 IF bf is NULL 6 THEN 7 RETURN NULL; 8 ELSE 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name); 10 RETURN dir_alias; 11 END IF; 12 END; 13 / Function created.
Create a function to extract the file name for a BFILE
column.
SQL> CREATE FUNCTION get_file_name (bf BFILE) RETURN VARCHAR2 is 2 dir_alias VARCHAR2(255); 3 file_name VARCHAR2(255); 4 BEGIN 5 IF bf is NULL 6 THEN 7 RETURN NULL; 8 ELSE 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name); 10 RETURN file_name; 11 END IF; 12 END; 13 / Function created.
You can then add a row with a NULL
value for the BFILE
column, as follows:
SQL> INSERT INTO PRINT_MEDIA (product_id, ad_id, ad_graphic) 2 VALUES (3515, 12001, NULL); 1 row created.
You can use the newly created functions to populate an external table. Note that the functions should set columns ad_graphic_dir
and ad_graphic_file
to NULL
if the BFILE
column is NULL
.
Create an external table to contain the data from the print_media
table. Use the get_dir_name
and get_file_name
functions to get the components of the BFILE
column.
SQL> CREATE TABLE print_media_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE oracle_datapump 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('pm_xt.dmp') 7 ) AS 8 SELECT product_id, ad_id, 9 get_dir_name (ad_graphic) ad_graphic_dir, 10 get_file_name(ad_graphic) ad_graphic_file 11 FROM print_media; Table created.
Create a function to load a BFILE
column from the data that is in the external table. This function will return NULL
if the ad_graphic_dir
column in the external table is NULL
.
SQL> CREATE FUNCTION get_bfile (dir VARCHAR2, file VARCHAR2) RETURN BFILE is 2 bf BFILE; 3 BEGIN 4 IF dir IS NULL 5 THEN 6 RETURN NULL; 7 ELSE 8 RETURN BFILENAME(dir,file); 9 END IF; 10 END; 11 / Function created.
The get_bfile
function can be used to populate a new table containing a BFILE
column.
SQL> CREATE TABLE print_media_int AS 2 SELECT product_id, ad_id, 3 get_bfile (ad_graphic_dir, ad_graphic_file) ad_graphic 4 FROM print_media_xt; Table created.
The data in the columns of the newly loaded table should match the data in the columns of the print_media
table.
SQL> SELECT product_id, ad_id, 2 get_dir_name(ad_graphic), 3 get_file_name(ad_graphic) 4 FROM print_media_int 5 MINUS 6 SELECT product_id, ad_id, 7 get_dir_name(ad_graphic), 8 get_file_name(ad_graphic) 9 FROM print_media; no rows selected
The ORACLE_DATAPUMP
access driver can be used to unload LONG
and LONG
RAW
columns, but that data can only be loaded back into LOB fields. The steps in the following extended example demonstrate the unloading of LONG
and LONG
RAW
datatypes.
If a table to be unloaded contains a LONG
or LONG
RAW
column, then define the corresponding columns in the external table as CLOB
for LONG
columns or BLOB
for LONG
RAW
columns.
SQL> CREATE TABLE long_tab 2 ( 3 key SMALLINT, 4 description LONG 5 ); Table created. SQL> INSERT INTO long_tab VALUES (1, 'Description Text'); 1 row created.
Now, an external table can be created that contains a CLOB
column to contain the data from the LONG
column. Note that when loading the external table, the TO_LOB
operator is used to convert the LONG
column into a CLOB
.
SQL> CREATE TABLE long_tab_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('long_tab_xt.dmp') 7 ) 8 AS SELECT key, TO_LOB(description) description FROM long_tab; Table created.
The data in the external table can be used to create another table exactly like the one that was unloaded except the new table will contain a LOB column instead of a LONG
column.
SQL> CREATE TABLE lob_tab 2 AS SELECT * from long_tab_xt; Table created.
Verify that the table was created correctly.
SQL> SELECT * FROM lob_tab; KEY DESCRIPTION ---------------------------------------------------------------------------- 1 Description Text
Final column objects are populated into an external table by moving each attribute in the object type into a column in the external table. In addition, the external table needs a new column to track whether the column object is atomically null. The following steps demonstrate the unloading and loading of columns containing final object types.
In the following example, the warehouse
column in the external table is used to track whether the warehouse
column in the source table is atomically NULL
.
SQL> CREATE TABLE inventories_obj_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('inv_obj_xt.dmp') 7 ) 8 AS 9 SELECT oi.product_id, 10 DECODE (oi.warehouse, NULL, 0, 1) warehouse, 11 oi.warehouse.location_id location_id, 12 oi.warehouse.warehouse_id warehouse_id, 13 oi.warehouse.warehouse_name warehouse_name, 14 oi.quantity_on_hand 15 FROM oc_inventories oi; Table created.
The columns in the external table containing the attributes of the object type can now be used as arguments to the type constructor function when loading a column of that type. Note that the warehouse
column in the external table is used to determine whether to call the constructor function for the object or set the column to NULL
.
Load a new internal table that looks exactly like the oc_inventories
view. (The use of the WHERE
1=0
clause creates a new table that looks exactly like the old table but does not copy any data from the old table into the new table.)
SQL> CREATE TABLE oc_inventories_2 AS SELECT * FROM oc_inventories WHERE 1 = 0; Table created. SQL> INSERT INTO oc_inventories_2 2 SELECT product_id, 3 DECODE (warehouse, 0, NULL, 4 warehouse_typ(warehouse_id, warehouse_name, 5 location_id)), quantity_on_hand 6 FROM inventories_obj_xt; 1112 rows created.
Object tables have an object identifier that uniquely identifies every row in the table. The following situations can occur:
If there is no need to unload and reload the object identifier, then the external table only needs to contain fields for the attributes of the type for the object table.
If the object identifier (OID) needs to be unloaded and reloaded and the OID for the table is one or more fields in the table, (also known as primary-key-based OIDs), then the external table has one column for every attribute of the type for the table.
If the OID needs to be unloaded and the OID for the table is system-generated, then the procedure is more complicated. In addition to the attributes of the type, another column needs to be created to hold the system-generated OID.
The steps in the following example demonstrate this last situation.
Create a table of a type with system-generated OIDs:
SQL> CREATE TYPE person AS OBJECT (name varchar2(20)) NOT FINAL 2 / Type created. SQL> CREATE TABLE people OF person; Table created. SQL> INSERT INTO people VALUES ('Euclid'); 1 row created.
Create an external table in which the column OID
is used to hold the column containing the system-generated OID.
SQL> CREATE TABLE people_xt 2 ORGANIZATION EXTERNAL 3 ( 4 TYPE ORACLE_DATAPUMP 5 DEFAULT DIRECTORY def_dir1 6 LOCATION ('people.dmp') 7 ) 8 AS SELECT SYS_NC_OID$ oid, name FROM people; Table created.
Create another table of the same type with system-generated OIDs. Then, execute an INSERT
statement to load the new table with data unloaded from the old table.
SQL> CREATE TABLE people2 OF person; Table created. SQL> SQL> INSERT INTO people2 (SYS_NC_OID$, SYS_NC_ROWINFO$) 2 SELECT oid, person(name) FROM people_xt; 1 row created. SQL> SQL> SELECT SYS_NC_OID$, name FROM people 2 MINUS 3 SELECT SYS_NC_OID$, name FROM people2; no rows selected
When you monitor performance, the most important measurement is the elapsed time for a load. Other important measurements are CPU usage, memory usage, and I/O rates.
You can alter performance by increasing or decreasing the degree of parallelism. The degree of parallelism indicates the number of access drivers that can be started to process the datafiles. The degree of parallelism enables you to choose on a scale between slower load with little resource usage and faster load with all resources utilized. The access driver cannot automatically tune itself, because it cannot determine how many resources you want to dedicate to the access driver.
An additional consideration is that the access drivers use large I/O buffers for better performance. On databases with shared servers, all memory used by the access drivers comes out of the system global area (SGA). For this reason, you should be careful when using external tables on shared servers.
The ORACLE_DATAPUMP
access driver has the following restrictions:
Handling of byte-order marks during a load: In an external table load for which the datafile character set is UTF8 or UTF16, it is not possible to suppress checking for byte-order marks. Suppression of byte-order mark checking is necessary only if the beginning of the datafile contains binary data that matches the byte-order mark encoding. (It is possible to suppress byte-order mark checking with SQL*Loader loads.) Note that checking for a byte-order mark does not mean that a byte-order mark must be present in the datafile. If no byte-order mark is present, the byte order of the server platform is used.
The external tables feature does not support the use of the backslash (\) escape character within strings. See Use of the Backslash Escape Character.
When identifiers (for example, column or table names) are specified in the external table access parameters, certain values are considered to be reserved words by the access parameter parser. If a reserved word is used as an identifier, it must be enclosed in double quotation marks.
When identifiers (for example, column or table names) are specified in the external table access parameters, certain values are considered to be reserved words by the access parameter parser. If a reserved word is used as an identifier, it must be enclosed in double quotation marks. The following are the reserved words for the ORACLE_DATAPUMP
access driver:
BADFILE
COMPATIBLE
COMPRESSION
DATAPUMP
DEBUG
ENCRYPTION
INTERNAL
JOB
LATEST
LOGFILE
NOBADFILE
NOLOGFILE
PARALLEL
TABLE
VERSION
WORKERID