Table of Contents
Replication enables data from one MySQL database server (the master) to be copied to one or more MySQL database servers (the slaves). Replication is asynchronous by default; slaves do not need to be connected permanently to receive updates from the master. Depending on the configuration, you can replicate all databases, selected databases, or even selected tables within a database.
Advantages of replication in MySQL include:
Scale-out solutions - spreading the load among multiple slaves to improve performance. In this environment, all writes and updates must take place on the master server. Reads, however, may take place on one or more slaves. This model can improve the performance of writes (since the master is dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.
Data security - because data is replicated to the slave, and the slave can pause the replication process, it is possible to run backup services on the slave without corrupting the corresponding master data.
Analytics - live data can be created on the master, while the analysis of the information can take place on the slave without affecting the performance of the master.
Long-distance data distribution - you can use replication to create a local copy of data for a remote site to use, without permanent access to the master.
For information on how to use replication in such scenarios, see Section 17.4, “Replication Solutions”.
MySQL 8.0 supports different methods of replication. The traditional method is based on replicating events from the master's binary log, and requires the log files and positions in them to be synchronized between master and slave. The newer method based on global transaction identifiers (GTIDs) is transactional and therefore does not require working with log files or positions within these files, which greatly simplifies many common replication tasks. Replication using GTIDs guarantees consistency between master and slave as long as all transactions committed on the master have also been applied on the slave. For more information about GTIDs and GTID-based replication in MySQL, see Section 17.1.3, “Replication with Global Transaction Identifiers”. For information on using binary log file position based replication, see Section 17.1, “Configuring Replication”.
Replication in MySQL supports different types of synchronization. The original type of synchronization is one-way, asynchronous replication, in which one server acts as the master, while one or more other servers act as slaves. This is in contrast to the synchronous replication which is a characteristic of NDB Cluster (see Chapter 22, MySQL NDB Cluster 8.0). In MySQL 8.0, semisynchronous replication is supported in addition to the built-in asynchronous replication. With semisynchronous replication, a commit performed on the master blocks before returning to the session that performed the transaction until at least one slave acknowledges that it has received and logged the events for the transaction; see Section 17.4.9, “Semisynchronous Replication”. MySQL 8.0 also supports delayed replication such that a slave server deliberately lags behind the master by at least a specified amount of time; see Section 17.4.10, “Delayed Replication”. For scenarios where synchronous replication is required, use NDB Cluster (see Chapter 22, MySQL NDB Cluster 8.0).
There are a number of solutions available for setting up replication between servers, and the best method to use depends on the presence of data and the engine types you are using. For more information on the available options, see Section 17.1.2, “Setting Up Binary Log File Position Based Replication”.
There are two core types of replication format, Statement Based Replication (SBR), which replicates entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You can also use a third variety, Mixed Based Replication (MBR). For more information on the different replication formats, see Section 17.2.1, “Replication Formats”.
Replication is controlled through a number of different options and variables. For more information, see Section 17.1.6, “Replication and Binary Logging Options and Variables”. Additional security measures can be applied to a replication topology, as described in Section 17.3, “Replication Security”.
You can use replication to solve a number of different problems, including performance, supporting the backup of different databases, and as part of a larger solution to alleviate system failures. For information on how to address these issues, see Section 17.4, “Replication Solutions”.
For notes and tips on how different data types and statements are treated during replication, including details of replication features, version compatibility, upgrades, and potential problems and their resolution, see Section 17.5, “Replication Notes and Tips”. For answers to some questions often asked by those who are new to MySQL Replication, see Section A.14, “MySQL 8.0 FAQ: Replication”.
For detailed information on the implementation of replication, how replication works, the process and contents of the binary log, background threads and the rules used to decide how statements are recorded and replicated, see Section 17.2, “Replication Implementation”.
This section describes how to configure the different types of replication available in MySQL and includes the setup and configuration required for a replication environment, including step-by-step instructions for creating a new replication environment. The major components of this section are:
For a guide to setting up two or more servers for replication using binary log file positions, Section 17.1.2, “Setting Up Binary Log File Position Based Replication”, deals with the configuration of the servers and provides methods for copying data between the master and slaves.
For a guide to setting up two or more servers for replication using GTID transactions, Section 17.1.3, “Replication with Global Transaction Identifiers”, deals with the configuration of the servers.
Events in the binary log are recorded using a number of formats. These are referred to as statement-based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR formats when appropriate. The different formats are discussed in Section 17.2.1, “Replication Formats”.
Detailed information on the different configuration options and variables that apply to replication is provided in Section 17.1.6, “Replication and Binary Logging Options and Variables”.
Once started, the replication process should require little administration or monitoring. However, for advice on common tasks that you may want to execute, see Section 17.1.7, “Common Replication Administration Tasks”.
This section describes replication between MySQL servers based on the binary log file position method, where the MySQL instance operating as the master (the source of the database changes) writes updates and changes as “events” to the binary log. The information in the binary log is stored in different logging formats according to the database changes being recorded. Slaves are configured to read the binary log from the master and to execute the events in the binary log on the slave's local database.
Each slave receives a copy of the entire contents of the binary log. It is the responsibility of the slave to decide which statements in the binary log should be executed. Unless you specify otherwise, all events in the master binary log are executed on the slave. If required, you can configure the slave to process only events that apply to particular databases or tables.
You cannot configure the master to log only certain events.
Each slave keeps a record of the binary log coordinates: the file name and position within the file that it has read and processed from the master. This means that multiple slaves can be connected to the master and executing different parts of the same binary log. Because the slaves control this process, individual slaves can be connected and disconnected from the server without affecting the master's operation. Also, because each slave records the current position within the binary log, it is possible for slaves to be disconnected, reconnect and then resume processing.
The master and each slave must be configured with a unique ID
(using the server_id
system
variable). In addition, each slave must be configured with
information about the master host name, log file name, and
position within that file. These details can be controlled from
within a MySQL session using the CHANGE
MASTER TO
statement on the slave. The details are stored
within the slave's master info repository (see
Section 17.2.4, “Replication Relay and Status Logs”).
This section describes how to set up a MySQL server to use binary log file position based replication. There are a number of different methods for setting up replication, and the exact method to use depends on how you are setting up replication, and whether you already have data within your master database.
There are some generic tasks that are common to all setups:
On the master, you must ensure that binary logging is enabled, and configure a unique server ID. This might require a server restart. See Section 17.1.2.1, “Setting the Replication Master Configuration”.
On each slave that you want to connect to the master, you must configure a unique server ID. This might require a server restart. See Section 17.1.2.2, “Setting the Replication Slave Configuration”.
Optionally, create a separate user for your slaves to use during authentication with the master when reading the binary log for replication. See Section 17.1.2.3, “Creating a User for Replication”.
Before creating a data snapshot or starting the replication process, on the master you should record the current position in the binary log. You need this information when configuring the slave so that the slave knows where within the binary log to start executing events. See Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”.
If you already have data on the master and want to use it to
synchronize the slave, you need to create a data snapshot to
copy the data to the slave. The storage engine you are using
has an impact on how you create the snapshot. When you are
using MyISAM
, you must stop
processing statements on the master to obtain a read-lock,
then obtain its current binary log coordinates and dump its
data, before permitting the master to continue executing
statements. If you do not stop the execution of statements,
the data dump and the master status information will not
match, resulting in inconsistent or corrupted databases on the
slaves. For more information on replicating a
MyISAM
master, see
Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”. If you are
using InnoDB
, you do not need a
read-lock and a transaction that is long enough to transfer
the data snapshot is sufficient. For more information, see
Section 15.19, “InnoDB and MySQL Replication”.
Configure the slave with settings for connecting to the master, such as the host name, login credentials, and binary log file name and position. See Section 17.1.2.7, “Setting the Master Configuration on the Slave”.
Implement replication-specific security measures on the masters and slaves as appropriate for your system. See Section 17.3, “Replication Security”.
Certain steps within the setup process require the
SUPER
privilege. If you do not
have this privilege, it might not be possible to enable
replication.
After configuring the basic options, select your scenario:
To set up replication for a fresh installation of a master and slaves that contain no data, see Section 17.1.2.6.1, “Setting Up Replication with New Master and Slaves”.
To set up replication of a new master using the data from an existing MySQL server, see Section 17.1.2.6.2, “Setting Up Replication with Existing Data”.
To add replication slaves to an existing replication environment, see Section 17.1.2.8, “Adding Slaves to a Replication Environment”.
Before administering MySQL replication servers, read this entire chapter and try all statements mentioned in Section 13.4.1, “SQL Statements for Controlling Master Servers”, and Section 13.4.2, “SQL Statements for Controlling Slave Servers”. Also familiarize yourself with the replication startup options described in Section 17.1.6, “Replication and Binary Logging Options and Variables”.
To configure a master to use binary log file position based replication, you must ensure that binary logging is enabled, and establish a unique server ID.
Each server within a replication topology must be configured
with a unique server ID, which you can specify using the
server_id
system variable. This
server ID is used to identify individual servers within the
replication topology, and must be a positive integer between 1
and (232)−1. The default
server_id
value from MySQL 8.0
is 1. You can change the
server_id
value dynamically by
issuing a statement like this:
SET GLOBAL server_id = 2;
How you organize and select the server IDs is your choice, so long as each server ID is different from every other server ID in use by any other server in the replication topology. Note that if a value of 0 (which was the default in earlier releases) was set previously for the server ID, you must restart the server to initialize the replication master with your new nonzero server ID. Otherwise, a server restart is not needed when you change the server ID, unless you make other configuration changes that require it.
Binary logging is required on the master because the binary log
is the basis for replicating changes from the master to its
slaves. Binary logging is enabled by default (the
log_bin
system variable is set
to ON). The --log-bin
option
tells the server what base name to use for binary log files. It
is recommended that you specify this option to give the binary
log files a non-default base name, so that if the host name
changes, you can easily continue to use the same binary log file
names (see Section B.4.7, “Known Issues in MySQL”). If binary logging
was previously disabled on the master using the
--skip-log-bin
option, you must restart the server without this option to
enable it.
The following options also have an impact on the replication master:
For the greatest possible durability and consistency in a
replication setup using
InnoDB
with transactions, you
should use
innodb_flush_log_at_trx_commit=1
and
sync_binlog=1
in the replication
master's my.cnf
file.
Ensure that the
skip_networking
system
variable is not enabled on the replication master. If
networking has been disabled, the slave cannot communicate
with the master and replication fails.
Each replication slave must have a unique server ID, as
specified by the server_id
system variable. If you are setting up multiple slaves, each one
must have a unique server_id
value that differs from that of the master and from any of the
other slaves. If the slave's server ID is not already set, or
the current value conflicts with the value that you have chosen
for the master server or another slave, you must change it.
The default server_id
value is
1. You can change the server_id
value dynamically by issuing a statement like this:
SET GLOBAL server_id = 21;
Note that a value of 0 for the server ID prevents a replication slave from connecting to a master. If that server ID value (which was the default in earlier releases) was set previously, you must restart the server to initialize the replication slave with your new nonzero server ID. Otherwise, a server restart is not needed when you change the server ID, unless you make other configuration changes that require it. For example, if binary logging was disabled on the server and you want it enabled for your slave, a server restart is required to enable this.
If you are shutting down the slave server, you can edit the
[mysqld]
section of the configuration file to
specify a unique server ID. For example:
[mysqld] server-id=21
Binary logging is enabled by default on all servers. A slave is not required to have binary logging enabled for replication to take place. However, binary logging on a slave means that the slave's binary log can be used for data backups and crash recovery. Slaves that have binary logging enabled can also be used as part of a more complex replication topology. For example, you might want to set up replication servers using this chained arrangement:
A -> B -> C
Here, A
serves as the master for the slave
B
, and B
serves as the
master for the slave C
. For this to work,
B
must be both a master
and a slave. Updates received from
A
must be logged by B
to
its binary log, in order to be passed on to
C
. In addition to binary logging, this
replication topology requires the
log_slave_updates
system
variable to be enabled. With slave updates enabled, the slave
writes updates that are received from a master server and
performed by the slave's SQL thread to the slave's own binary
log. The log_slave_updates
system variable is enabled by default.
If you need to disable binary logging or slave update logging on
a slave server, you can do this by specifying the
--skip-log-bin
and --log-slave-updates=OFF
options for the slave. If you decide to re-enable these features
on the server, remove the relevant options and restart the
server.
Each slave connects to the master using a MySQL user name and
password, so there must be a user account on the master that the
slave can use to connect. The user name is specified by the
MASTER_USER
option on the CHANGE
MASTER TO
command when you set up a replication slave.
Any account can be used for this operation, providing it has
been granted the REPLICATION
SLAVE
privilege. You can choose to create a different
account for each slave, or connect to the master using the same
account for each slave.
Although you do not have to create an account specifically for
replication, you should be aware that the replication user name
and password are stored in plain text in the master info
repository table mysql.slave_master_info
(see
Section 17.2.4.2, “Slave Status Logs”). Therefore, you may want to
create a separate account that has privileges only for the
replication process, to minimize the possibility of compromise
to other accounts.
To create a new account, use CREATE
USER
. To grant this account the privileges required
for replication, use the GRANT
statement. If you create an account solely for the purposes of
replication, that account needs only the
REPLICATION SLAVE
privilege. For
example, to set up a new user, repl
, that can
connect for replication from any host within the
example.com
domain, issue these statements on
the master:
mysql>CREATE USER 'repl'@'%.example.com' IDENTIFIED BY '
mysql>password
';GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.example.com';
See Section 13.7.1, “Account Management Statements”, for more information on statements for manipulation of user accounts.
To connect to the replication master using a user account that
authenticates with the
caching_sha2_password
plugin, you must
either set up a secure connection as described in
Section 17.3.1, “Setting Up Replication to Use Encrypted Connections”,
or enable the unencrypted connection to support password
exchange using an RSA key pair. The
caching_sha2_password
authentication plugin
is the default for new users created from MySQL 8.0 (for
details, see
Section 6.4.1.2, “Caching SHA-2 Pluggable Authentication”).
If the user account that you create or use for replication (as
specified by the MASTER_USER
option) uses
this authentication plugin, and you are not using a secure
connection, you must enable RSA key pair-based password
exchange for a successful connection.
To configure the slave to start the replication process at the correct point, you need to note the master's current coordinates within its binary log.
This procedure uses FLUSH TABLES WITH
READ LOCK
, which blocks
COMMIT
operations for
InnoDB
tables.
If you are planning to shut down the master to create a data snapshot, you can optionally skip this procedure and instead store a copy of the binary log index file along with the data snapshot. In that situation, the master creates a new binary log file on restart. The master binary log coordinates where the slave must start the replication process are therefore the start of that new file, which is the next binary log file on the master following after the files that are listed in the copied binary log index file.
To obtain the master binary log coordinates, follow these steps:
Start a session on the master by connecting to it with the
command-line client, and flush all tables and block write
statements by executing the FLUSH
TABLES WITH READ LOCK
statement:
mysql> FLUSH TABLES WITH READ LOCK;
Leave the client from which you issued the
FLUSH TABLES
statement
running so that the read lock remains in effect. If you
exit the client, the lock is released.
In a different session on the master, use the
SHOW MASTER STATUS
statement
to determine the current binary log file name and position:
mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+
The File
column shows the name of the log
file and the Position
column shows the
position within the file. In this example, the binary log
file is mysql-bin.000003
and the position
is 73. Record these values. You need them later when you are
setting up the slave. They represent the replication
coordinates at which the slave should begin processing new
updates from the master.
If the master has been running previously with binary
logging disabled, the log file name and position values
displayed by SHOW MASTER
STATUS
or mysqldump
--master-data will be empty. In that case, the
values that you need to use later when specifying the
slave's log file and position are the empty string
(''
) and 4
.
You now have the information you need to enable the slave to start reading from the binary log in the correct place to start replication.
The next step depends on whether you have existing data on the master. Choose one of the following options:
If you have existing data that needs be to synchronized with the slave before you start replication, leave the client running so that the lock remains in place. This prevents any further changes being made, so that the data copied to the slave is in synchrony with the master. Proceed to Section 17.1.2.5, “Choosing a Method for Data Snapshots”.
If you are setting up a new master and slave replication group, you can exit the first session to release the read lock. See Section 17.1.2.6.1, “Setting Up Replication with New Master and Slaves” for how to proceed.
If the master database contains existing data it is necessary to copy this data to each slave. There are different ways to dump the data from the master database. The following sections describe possible options.
To select the appropriate method of dumping the database, choose between these options:
Use the mysqldump tool to create a dump
of all the databases you want to replicate. This is the
recommended method, especially when using
InnoDB
.
If your database is stored in binary portable files, you can
copy the raw data files to a slave. This can be more
efficient than using mysqldump and
importing the file on each slave, because it skips the
overhead of updating indexes as the
INSERT
statements are replayed. With
storage engines such as InnoDB
this is not recommended.
To create a snapshot of the data in an existing master database, use the mysqldump tool. Once the data dump has been completed, import this data into the slave before starting the replication process.
The following example dumps all databases to a file named
dbdump.db
, and includes the
--master-data
option which
automatically appends the CHANGE MASTER
TO
statement required on the slave to start the
replication process:
shell> mysqldump --all-databases --master-data > dbdump.db
If you do not use
--master-data
, then it is
necessary to lock all tables in a separate session manually.
See Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”.
It is possible to exclude certain databases from the dump
using the mysqldump tool. If you want to
choose which databases to include in the dump, do not use
--all-databases
. Choose one
of these options:
Exclude all the tables in the database using
--ignore-table
option.
Name only those databases which you want dumped using the
--databases
option.
By default, if GTIDs are in use on the master
(gtid_mode=ON
),
mysqldump includes the GTIDs from the
gtid_executed
set on the
master in the dump output to add them to the
gtid_purged
set on the
slave. If you are dumping only specific databases or tables,
it is important to note that the value that is included by
mysqldump includes the GTIDs of all
transactions in the
gtid_executed
set on the
master, even those that changed suppressed parts of the
database, or other databases on the server that were not
included in the partial dump. Check the description for
mysqldump's --set-gtid-purged
option to
find the outcome of the default behavior for the MySQL
Server versions you are using, and how to change the
behavior if this outcome is not suitable for your situation.
For more information, see Section 4.5.4, “mysqldump — A Database Backup Program”.
To import the data, either copy the dump file to the slave, or access the file from the master when connecting remotely to the slave.
This section describes how to create a data snapshot using the raw files which make up the database. Employing this method with a table using a storage engine that has complex caching or logging algorithms requires extra steps to produce a perfect “point in time” snapshot: the initial copy command could leave out cache information and logging updates, even if you have acquired a global read lock. How the storage engine responds to this depends on its crash recovery abilities.
If you use InnoDB
tables, you can
use the mysqlbackup command from the MySQL
Enterprise Backup component to produce a consistent snapshot.
This command records the log name and offset corresponding to
the snapshot to be used on the slave. MySQL Enterprise Backup
is a commercial product that is included as part of a MySQL
Enterprise subscription. See
Section 30.2, “MySQL Enterprise Backup Overview” for detailed
information.
This method also does not work reliably if the master and
slave have different values for
ft_stopword_file
,
ft_min_word_len
, or
ft_max_word_len
and you are
copying tables having full-text indexes.
Assuming the above exceptions do not apply to your database,
use the cold backup
technique to obtain a reliable binary snapshot of
InnoDB
tables: do a
slow shutdown of the
MySQL Server, then copy the data files manually.
To create a raw data snapshot of
MyISAM
tables when your MySQL
data files exist on a single file system, you can use standard
file copy tools such as cp or
copy, a remote copy tool such as
scp or rsync, an
archiving tool such as zip or
tar, or a file system snapshot tool such as
dump. If you are replicating only certain
databases, copy only those files that relate to those tables.
For InnoDB
, all tables in all databases are
stored in the system
tablespace files, unless you have the
innodb_file_per_table
option
enabled.
The following files are not required for replication:
Files relating to the mysql
database.
The master info repository file
master.info
, if used; the use of this
file is now deprecated (see Section 17.2.4, “Replication Relay and Status Logs”).
The master's binary log files, with the exception of the binary log index file if you are going to use this to locate the master binary log coordinates for the slave.
Any relay log files.
Depending on whether you are using InnoDB
tables or not, choose one of the following:
If you are using InnoDB
tables,
and also to get the most consistent results with a raw data
snapshot, shut down the master server during the process, as
follows:
Acquire a read lock and get the master's status. See Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”.
In a separate session, shut down the master server:
shell> mysqladmin shutdown
Make a copy of the MySQL data files. The following examples show common ways to do this. You need to choose only one of them:
shell>tar cf
shell>/tmp/db.tar
./data
zip -r
shell>/tmp/db.zip
./data
rsync --recursive
./data
/tmp/dbdata
Restart the master server.
If you are not using InnoDB
tables, you can get a snapshot of the system from a master
without shutting down the server as described in the following
steps:
Acquire a read lock and get the master's status. See Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”.
Make a copy of the MySQL data files. The following examples show common ways to do this. You need to choose only one of them:
shell>tar cf
shell>/tmp/db.tar
./data
zip -r
shell>/tmp/db.zip
./data
rsync --recursive
./data
/tmp/dbdata
In the client where you acquired the read lock, release the lock:
mysql> UNLOCK TABLES;
Once you have created the archive or copy of the database, copy the files to each slave before starting the slave replication process.
The following sections describe how to set up slaves. Before you proceed, ensure that you have:
Configured the MySQL master with the necessary configuration properties. See Section 17.1.2.1, “Setting the Replication Master Configuration”.
Obtained the master status information, or a copy of the master's binary log index file made during a shutdown for the data snapshot. See Section 17.1.2.4, “Obtaining the Replication Master Binary Log Coordinates”.
On the master, released the read lock:
mysql> UNLOCK TABLES;
On the slave, edited the MySQL configuration. See Section 17.1.2.2, “Setting the Replication Slave Configuration”.
The next steps depend on whether you have existing data to import to the slave or not. See Section 17.1.2.5, “Choosing a Method for Data Snapshots” for more information. Choose one of the following:
If you do not have a snapshot of a database to import, see Section 17.1.2.6.1, “Setting Up Replication with New Master and Slaves”.
If you have a snapshot of a database to import, see Section 17.1.2.6.2, “Setting Up Replication with Existing Data”.
When there is no snapshot of a previous database to import, configure the slave to start the replication from the new master.
To set up replication between a master and a new slave:
Start up the MySQL slave.
Execute a CHANGE MASTER TO
statement to set the master replication server
configuration. See
Section 17.1.2.7, “Setting the Master Configuration on the Slave”.
Perform these slave setup steps on each slave.
This method can also be used if you are setting up new servers but have an existing dump of the databases from a different server that you want to load into your replication configuration. By loading the data into a new master, the data is automatically replicated to the slaves.
If you are setting up a new replication environment using the data from a different existing database server to create a new master, run the dump file generated from that server on the new master. The database updates are automatically propagated to the slaves:
shell> mysql -h master < fulldb.dump
When setting up replication with existing data, transfer the snapshot from the master to the slave before starting replication. The process for importing data to the slave depends on how you created the snapshot of data on the master.
Choose one of the following:
If you used mysqldump:
Start the slave, using the
--skip-slave-start
option
so that replication does not start.
Import the dump file:
shell> mysql < fulldb.dump
If you created a snapshot using the raw data files:
Extract the data files into your slave data directory. For example:
shell> tar xvf dbdump.tar
You may need to set permissions and ownership on the files so that the slave server can access and modify them.
Start the slave, using the
--skip-slave-start
option
so that replication does not start.
Configure the slave with the replication coordinates from
the master. This tells the slave the binary log file and
position within the file where replication needs to start.
Also, configure the slave with the login credentials and
host name of the master. For more information on the
CHANGE MASTER TO
statement
required, see
Section 17.1.2.7, “Setting the Master Configuration on the Slave”.
Start the slave threads:
mysql> START SLAVE;
After you have performed this procedure, the slave connects to the master and replicates any updates that have occurred on the master since the snapshot was taken. Error messages are issued to the slave's error log if it is not able to replicate for any reason.
The slave uses information logged in its master info log and
relay log info log to keep track of how much of the
master's binary log it has processed. From MySQL 8.0, by
default, the repositories for these slave status logs are
tables named slave_master_info
and
slave_relay_log_info
in the
mysql
database. The alternative settings
master_info_repository=FILE
and
relay_log_info_repository=FILE
,
where the repositories are files named
master.info
and
relay-log.info
in the data directory, are
now deprecated and will be removed in a future release.
Do not remove or edit these tables (or
files, if used) unless you know exactly what you are doing and
fully understand the implications. Even in that case, it is
preferred that you use the CHANGE MASTER
TO
statement to change replication parameters. The
slave uses the values specified in the statement to update the
slave status logs automatically. See
Section 17.2.4, “Replication Relay and Status Logs”, for more information.
The contents of the master info log override some of the
server options specified on the command line or in
my.cnf
. See
Section 17.1.6, “Replication and Binary Logging Options and Variables”, for more details.
A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same master snapshot and follow the slave portion of the procedure just described.
To set up the slave to communicate with the master for replication, configure the slave with the necessary connection information. To do this, execute the following statement on the slave, replacing the option values with the actual values relevant to your system:
mysql>CHANGE MASTER TO
->MASTER_HOST='
->master_host_name
',MASTER_USER='
->replication_user_name
',MASTER_PASSWORD='
->replication_password
',MASTER_LOG_FILE='
->recorded_log_file_name
',MASTER_LOG_POS=
recorded_log_position
;
Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.
The CHANGE MASTER TO
statement
has other options as well. For example, it is possible to set up
secure replication using SSL. For a full list of options, and
information about the maximum permissible length for the
string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Statement”.
As noted in
Section 17.1.2.3, “Creating a User for Replication”, if you
are not using a secure connection and the user account named
in the MASTER_USER
option authenticates
with the caching_sha2_password
plugin (the
default from MySQL 8.0), you must specify the
MASTER_PUBLIC_KEY_PATH
or
GET_MASTER_PUBLIC_KEY
option in the
CHANGE MASTER TO
statement to enable RSA
key pair-based password exchange.
You can add another slave to an existing replication configuration without stopping the master. To do this, you can set up the new slave by copying the data directory of an existing slave, and giving the new slave a different server ID (which is user-specified) and server UUID (which is generated at startup).
To duplicate an existing slave:
Stop the existing slave and record the slave status
information, particularly the master binary log file and
relay log file positions. You can view the slave status
either in the Performance Schema replication tables (see
Section 26.12.11, “Performance Schema Replication Tables”), or
by issuing SHOW SLAVE STATUS
as follows:
mysql>STOP SLAVE;
mysql>SHOW SLAVE STATUS\G
Shut down the existing slave:
shell> mysqladmin shutdown
Copy the data directory from the existing slave to the new
slave, including the log files and relay log files. You can
do this by creating an archive using tar
or WinZip
, or by performing a direct copy
using a tool such as cp or
rsync.
Before copying, verify that all the files relating to
the existing slave actually are stored in the data
directory. For example, the InnoDB
system tablespace, undo tablespace, and redo log might
be stored in an alternative location.
InnoDB
tablespace files and
file-per-table tablespaces might have been created in
other directories. The binary logs and relay logs for
the slave might be in their own directories outside
the data directory. Check through the system variables
that are set for the existing slave and look for any
alternative paths that have been specified. If you
find any, copy these directories over as well.
During copying, if files have been used for the master info and relay log info repositories (see Section 17.2.4, “Replication Relay and Status Logs”), ensure that you also copy these files from the existing slave to the new slave. If tables have been used for the repositories, which is the default from MySQL 8.0, the tables are in the data directory.
After copying, delete the
auto.cnf
file from the copy of
the data directory on the new slave, so that the new
slave is started with a different generated server
UUID. The server UUID must be unique.
A common problem that is encountered when adding new replication slaves is that the new slave fails with a series of warning and error messages like these:
071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so replication may break when this MySQL server acts as a slave and has his hostname changed!! Please use '--relay-log=new_slave_hostname
-relay-bin' to avoid this problem. 071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname
-relay-bin.003525' (relay_log_pos 22940879) 071118 16:44:10 [ERROR] Could not find target log during relay log initialization 071118 16:44:10 [ERROR] Failed to initialize the master info structure
This situation can occur if the
relay_log
system variable
is not specified, as the relay log files contain the host
name as part of their file names. This is also true of the
relay log index file if the
relay_log_index
system
variable is not used. For more information about these
variables, see Section 17.1.6, “Replication and Binary Logging Options and Variables”.
To avoid this problem, use the same value for
relay_log
on the new slave
that was used on the existing slave. If this option was not
set explicitly on the existing slave, use
.
If this is not possible, copy the existing slave's relay log
index file to the new slave and set the
existing_slave_hostname
-relay-binrelay_log_index
system
variable on the new slave to match what was used on the
existing slave. If this option was not set explicitly on the
existing slave, use
.
Alternatively, if you have already tried to start the new
slave after following the remaining steps in this section
and have encountered errors like those described previously,
then perform the following steps:
existing_slave_hostname
-relay-bin.index
If you have not already done so, issue
STOP SLAVE
on the new
slave.
If you have already started the existing slave again,
issue STOP SLAVE
on the
existing slave as well.
Copy the contents of the existing slave's relay log index file into the new slave's relay log index file, making sure to overwrite any content already in the file.
Proceed with the remaining steps in this section.
When copying is complete, restart the existing slave.
On the new slave, edit the configuration and give the new
slave a unique server ID (using the
server_id
system variable)
that is not used by the master or any of the existing
slaves.
Start the new slave server, specifying the
--skip-slave-start
option so
that replication does not start yet. Use the Performance
Schema replication tables or issue SHOW
SLAVE STATUS
to confirm that the new slave has the
correct settings when compared with the existing slave. Also
display the server ID and server UUID and verify that these
are correct and unique for the new slave.
Start the slave threads by issuing a
START SLAVE
statement:
mysql> START SLAVE;
The new slave now uses the information in its master info repository to start the replication process.
This section explains transaction-based replication using global transaction identifiers (GTIDs). When using GTIDs, each transaction can be identified and tracked as it is committed on the originating server and applied by any slaves; this means that it is not necessary when using GTIDs to refer to log files or positions within those files when starting a new slave or failing over to a new master, which greatly simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple to determine whether masters and slaves are consistent; as long as all transactions committed on a master are also committed on a slave, consistency between the two is guaranteed. You can use either statement-based or row-based replication with GTIDs (see Section 17.2.1, “Replication Formats”); however, for best results, we recommend that you use the row-based format.
GTIDs are always preserved between master and slave. This means that you can always determine the source for any transaction applied on any slave by examining its binary log. In addition, once a transaction with a given GTID is committed on a given server, any subsequent transaction having the same GTID is ignored by that server. Thus, a transaction committed on the master can be applied no more than once on the slave, which helps to guarantee consistency.
This section discusses the following topics:
How GTIDs are defined and created, and how they are represented in a MySQL server (see Section 17.1.3.1, “GTID Format and Storage”).
The life cycle of a GTID (see Section 17.1.3.2, “GTID Life Cycle”).
The auto-positioning function for synchronizing a slave and master that use GTIDs (see Section 17.1.3.3, “GTID Auto-Positioning”).
A general procedure for setting up and starting GTID-based replication (see Section 17.1.3.4, “Setting Up Replication Using GTIDs”).
Suggested methods for provisioning new replication servers when using GTIDs (see Section 17.1.3.5, “Using GTIDs for Failover and Scaleout”).
Restrictions and limitations that you should be aware of when using GTID-based replication (see Section 17.1.3.6, “Restrictions on Replication with GTIDs”).
Stored functions that you can use to work with GTIDs (see Section 17.1.3.7, “Stored Function Examples to Manipulate GTIDs”).
For information about MySQL Server options and variables relating to GTID-based replication, see Section 17.1.6.5, “Global Transaction ID System Variables”. See also Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”, which describes SQL functions supported by MySQL 8.0 for use with GTIDs.
A global transaction identifier (GTID) is a unique identifier created and associated with each transaction committed on the server of origin (the master). This identifier is unique not only to the server on which it originated, but is unique across all servers in a given replication topology.
GTID assignment distinguishes between client transactions, which are committed on the master, and replicated transactions, which are reproduced on a slave. When a client transaction is committed on the master, it is assigned a new GTID, provided that the transaction was written to the binary log. Client transactions are guaranteed to have monotonically increasing GTIDs without gaps between the generated numbers. If a client transaction is not written to the binary log (for example, because the transaction was filtered out, or the transaction was read-only), it is not assigned a GTID on the server of origin.
Replicated transactions retain the same GTID that was assigned to
the transaction on the server of origin. The GTID is present
before the replicated transaction begins to execute, and is
persisted even if the replicated transaction is not written to the
binary log on the slave, or is filtered out on the slave. The
MySQL system table mysql.gtid_executed
is used
to preserve the assigned GTIDs of all the transactions applied on
a MySQL server, except those that are stored in a currently active
binary log file.
The auto-skip function for GTIDs means that a transaction committed on the master can be applied no more than once on the slave, which helps to guarantee consistency. Once a transaction with a given GTID has been committed on a given server, any attempt to execute a subsequent transaction with the same GTID is ignored by that server. No error is raised, and no statement in the transaction is executed.
If a transaction with a given GTID has started to execute on a server, but has not yet committed or rolled back, any attempt to start a concurrent transaction on the server with the same GTID will block. The server neither begins to execute the concurrent transaction nor returns control to the client. Once the first attempt at the transaction commits or rolls back, concurrent sessions that were blocking on the same GTID may proceed. If the first attempt rolled back, one concurrent session proceeds to attempt the transaction, and any other concurrent sessions that were blocking on the same GTID remain blocked. If the first attempt committed, all the concurrent sessions stop being blocked, and auto-skip all the statements of the transaction.
A GTID is represented as a pair of coordinates, separated by a
colon character (:
), as shown here:
GTID =source_id
:transaction_id
The source_id
identifies the
originating server. Normally, the master's
server_uuid
is used for this
purpose. The transaction_id
is a
sequence number determined by the order in which the transaction
was committed on the master. For example, the first transaction to
be committed has 1
as its
transaction_id
, and the tenth
transaction to be committed on the same originating server is
assigned a transaction_id
of
10
. It is not possible for a transaction to
have 0
as a sequence number in a GTID. For
example, the twenty-third transaction to be committed originally
on the server with the UUID
3E11FA47-71CA-11E1-9E33-C80AA9429562
has this
GTID:
3E11FA47-71CA-11E1-9E33-C80AA9429562:23
The GTID for a transaction is shown in the output from
mysqlbinlog, and it is used to identify an
individual transaction in the Performance Schema replication
status tables, for example,
replication_applier_status_by_worker
.
The value stored by the gtid_next
system variable (@@GLOBAL.gtid_next
) is a
single GTID.
A GTID set is a set comprising one or more single GTIDs or
ranges of GTIDs. GTID sets are used in a MySQL server in several
ways. For example, the values stored by the
gtid_executed
and
gtid_purged
system variables
are GTID sets. The START SLAVE
clauses UNTIL SQL_BEFORE_GTIDS
and
UNTIL SQL_AFTER_GTIDS
can be used to make a
slave process transactions only up to the first GTID in a GTID
set, or stop after the last GTID in a GTID set. The built-in
functions GTID_SUBSET()
and
GTID_SUBTRACT()
require GTID sets
as input.
A range of GTIDs originating from the same server can be collapsed into a single expression, as shown here:
3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
The above example represents the first through fifth
transactions originating on the MySQL server whose
server_uuid
is
3E11FA47-71CA-11E1-9E33-C80AA9429562
.
Multiple single GTIDs or ranges of GTIDs originating from the
same server can also be included in a single expression, with
the GTIDs or ranges separated by colons, as in the following
example:
3E11FA47-71CA-11E1-9E33-C80AA9429562:1-3:11:47-49
A GTID set can include any combination of single GTIDs and
ranges of GTIDs, and it can include GTIDs originating from
different servers. This example shows the GTID set stored in the
gtid_executed
system variable
(@@GLOBAL.gtid_executed
) of a slave that has
applied transactions from more than one master:
2174B383-5441-11E8-B90A-C80AA9429562:1-3, 24DA167-0C0C-11E8-8442-00059A3C7B00:1-19
When GTID sets are returned from server variables, UUIDs are in alphabetical order, and numeric intervals are merged and in ascending order.
The syntax for a GTID set is as follows:
gtid_set
:uuid_set
[,uuid_set
] ... | ''uuid_set
:uuid
:interval
[:interval
]...uuid
:hhhhhhhh
-hhhh
-hhhh
-hhhh
-hhhhhhhhhhhh
h
: [0-9|A-F]interval
:n
[-n
] (n
>= 1)
GTIDs are stored in a table named
gtid_executed
, in the
mysql
database. A row in this table contains,
for each GTID or set of GTIDs that it represents, the UUID of
the originating server, and the starting and ending transaction
IDs of the set; for a row referencing only a single GTID, these
last two values are the same.
The mysql.gtid_executed
table is created (if
it does not already exist) when MySQL Server is installed or
upgraded, using a CREATE TABLE
statement similar to that shown here:
CREATE TABLE gtid_executed ( source_uuid CHAR(36) NOT NULL, interval_start BIGINT(20) NOT NULL, interval_end BIGINT(20) NOT NULL, PRIMARY KEY (source_uuid, interval_start) )
As with other MySQL system tables, do not attempt to create or modify this table yourself.
The mysql.gtid_executed
table is provided for
internal use by the MySQL server. It enables a slave to use
GTIDs when binary logging is disabled on the slave, and it
enables retention of the GTID state when the binary logs have
been lost. Note that the mysql.gtid_executed
table is cleared if you issue RESET
MASTER
.
GTIDs are stored in the mysql.gtid_executed
table only when gtid_mode
is
ON
or ON_PERMISSIVE
. If
binary logging is disabled (log_bin
is
OFF
), or if
log_slave_updates
is disabled,
the server stores the GTID belonging to each transaction
together with the transaction in the
mysql.gtid_executed
table at transaction
commit time. In addition, the table is compressed periodically
at a user-configurable rate, as described in
mysql.gtid_executed Table Compression.
If binary logging is enabled (log_bin
is
ON
), from MySQL 8.0.17 for the
InnoDB
storage engine only, the server
updates the mysql.gtid_executed
table in the
same way as when binary logging or slave update logging is
disabled, storing the GTID for each transaction at transaction
commit time. However, in releases before MySQL 8.0.17, and for
other storage engines, the server only updates the
mysql.gtid_executed
table when the binary log
is rotated or the server is shut down. At these times, the
server writes GTIDs for all transactions that were written into
the previous binary log into the
mysql.gtid_executed
table. This situation
applies on a replication master prior to MySQL 8.0.17, or on a
replication slave prior to MySQL 8.0.17 where binary logging is
enabled, or with storage engines other than
InnoDB
, it has the following consequences:
In the event of the server stopping unexpectedly, the set of
GTIDs from the current binary log file is not saved in the
mysql.gtid_executed
table. These GTIDs
are added to the table from the binary log file during
recovery so that replication can continue. The exception to
this is if you disable binary logging when the server is
restarted (using
--skip-log-bin
or
--disable-log-bin
).
In that case, the server cannot access the binary log file
to recover the GTIDs, so replication cannot be started.
The mysql.gtid_executed
table does not
hold a complete record of the GTIDs for all executed
transactions. That information is provided by the global
value of the gtid_executed
system variable. In releases before MySQL 8.0.17 and with
storage engines other than InnoDB
, always
use @@GLOBAL.gtid_executed
, which is
updated after every commit, to represent the GTID state for
the MySQL server, instead of querying the
mysql.gtid_executed
table.
The MySQL server can write to the
mysql.gtid_executed
table even when the
server is in read only or super read only mode. In releases
before MySQL 8.0.17, this ensures that the binary log file can
still be rotated in these modes. If the
mysql.gtid_executed
table cannot be accessed
for writes, and the binary log file is rotated for any reason
other than reaching the maximum file size
(max_binlog_size
), the current
binary log file continues to be used. An error message is
returned to the client that requested the rotation, and a
warning is logged on the server. If the
mysql.gtid_executed
table cannot be accessed
for writes and max_binlog_size
is reached, the server responds according to its
binlog_error_action
setting. If
IGNORE_ERROR
is set, an error is logged on
the server and binary logging is halted, or if
ABORT_SERVER
is set, the server shuts down.
Over the course of time, the
mysql.gtid_executed
table can become filled
with many rows referring to individual GTIDs that originate on
the same server, and whose transaction IDs make up a range,
similar to what is shown here:
+--------------------------------------+----------------+--------------+ | source_uuid | interval_start | interval_end | |--------------------------------------+----------------+--------------| | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 37 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 38 | 38 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 39 | 39 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 40 | 40 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 41 | 41 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 42 | 42 | | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 43 | 43 | ...
To save space, the MySQL server compresses the
mysql.gtid_executed
table periodically by
replacing each such set of rows with a single row that spans the
entire interval of transaction identifiers, like this:
+--------------------------------------+----------------+--------------+ | source_uuid | interval_start | interval_end | |--------------------------------------+----------------+--------------| | 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 43 | ...
You can control the number of transactions that are allowed to
elapse before the table is compressed, and thus the compression
rate, by setting the
gtid_executed_compression_period
system variable. This variable's default value is 1000,
meaning that by default, compression of the table is performed
after each 1000 transactions. Setting
gtid_executed_compression_period
to 0 prevents the compression from being performed at all, and
you should be prepared for a potentially large increase in the
amount of disk space that may be required by the
gtid_executed
table if you do this.
When binary logging is enabled, the value of
gtid_executed_compression_period
is not used and the
mysql.gtid_executed
table is compressed on
each binary log rotation.
Compression of the mysql.gtid_executed
table
is performed by a dedicated foreground thread named
thread/sql/compress_gtid_table
. This thread
is not listed in the output of SHOW
PROCESSLIST
, but it can be viewed as a row in the
threads
table, as shown here:
mysql> SELECT * FROM performance_schema.threads WHERE NAME LIKE '%gtid%'\G
*************************** 1. row ***************************
THREAD_ID: 26
NAME: thread/sql/compress_gtid_table
TYPE: FOREGROUND
PROCESSLIST_ID: 1
PROCESSLIST_USER: NULL
PROCESSLIST_HOST: NULL
PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: Daemon
PROCESSLIST_TIME: 1509
PROCESSLIST_STATE: Suspending
PROCESSLIST_INFO: NULL
PARENT_THREAD_ID: 1
ROLE: NULL
INSTRUMENTED: YES
HISTORY: YES
CONNECTION_TYPE: NULL
THREAD_OS_ID: 18677
The thread/sql/compress_gtid_table
thread
normally sleeps until
gtid_executed_compression_period
transactions have been executed, then wakes up to perform
compression of the mysql.gtid_executed
table
as described previously. It then sleeps until another
gtid_executed_compression_period
transactions have taken place, then wakes up to perform the
compression again, repeating this loop indefinitely. Setting
this value to 0 when binary logging is disabled means that the
thread always sleeps and never wakes up.
When the server instance is started and the
thread/sql/compress_gtid_table
thread is
launched, in most server configurations, compression is
performed for the mysql.gtid_executed
table.
In releases before MySQL 8.0.17 when binary logging is enabled,
compression is triggered by the fact of the binary log being
rotated at startup. In releases from MySQL 8.0.20, compression
is triggered by the thread launch. In the intervening releases,
compression does not take place at startup.
The life cycle of a GTID consists of the following steps:
A transaction is executed and committed on the master. This client transaction is assigned a GTID composed of the master's UUID and the smallest nonzero transaction sequence number not yet used on this server. The GTID is written to the master's binary log (immediately preceding the transaction itself in the log). If a client transaction is not written to the binary log (for example, because the transaction was filtered out, or the transaction was read-only), it is not assigned a GTID.
If a GTID was assigned for the transaction, the GTID is
persisted atomically at commit time by writing it to the
binary log at the beginning of the transaction (as a
Gtid_log_event
). Whenever the binary log is
rotated or the server is shut down, the server writes GTIDs
for all transactions that were written into the previous
binary log file into the
mysql.gtid_executed
table.
If a GTID was assigned for the transaction, the GTID is
externalized non-atomically (very shortly after the
transaction is committed) by adding it to the set of GTIDs in
the gtid_executed
system
variable (@@GLOBAL.gtid_executed
). This
GTID set contains a representation of the set of all committed
GTID transactions, and it is used in replication as a token
that represents the server state. With binary logging enabled
(as required for the master), the set of GTIDs in the
gtid_executed
system variable
is a complete record of the transactions applied, but the
mysql.gtid_executed
table is not, because
the most recent history is still in the current binary log
file.
After the binary log data is transmitted to the slave and
stored in the slave's relay log (using established
mechanisms for this process, see
Section 17.2, “Replication Implementation”, for details),
the slave reads the GTID and sets the value of its
gtid_next
system variable as
this GTID. This tells the slave that the next transaction must
be logged using this GTID. It is important to note that the
slave sets gtid_next
in a session context.
The slave verifies that no thread has yet taken ownership of
the GTID in gtid_next
in
order to process the transaction. By reading and checking the
replicated transaction's GTID first, before processing the
transaction itself, the slave guarantees not only that no
previous transaction having this GTID has been applied on the
slave, but also that no other session has already read this
GTID but has not yet committed the associated transaction. So
if multiple clients attempt to apply the same transaction
concurrently, the server resolves this by letting only one of
them execute. The gtid_owned
system variable (@@GLOBAL.gtid_owned
) for
the slave shows each GTID that is currently in use and the ID
of the thread that owns it. If the GTID has already been used,
no error is raised, and the auto-skip function is used to
ignore the transaction.
If the GTID has not been used, the slave applies the
replicated transaction. Because
gtid_next
is set to the GTID
already assigned by the master, the slave does not attempt to
generate a new GTID for this transaction, but instead uses the
GTID stored in gtid_next
.
If binary logging is enabled on the slave, the GTID is
persisted atomically at commit time by writing it to the
binary log at the beginning of the transaction (as a
Gtid_log_event
). Whenever the binary log is
rotated or the server is shut down, the server writes GTIDs
for all transactions that were written into the previous
binary log file into the
mysql.gtid_executed
table.
If binary logging is disabled on the slave, the GTID is
persisted atomically by writing it directly into the
mysql.gtid_executed
table. MySQL appends a
statement to the transaction to insert the GTID into the
table. From MySQL 8.0, this operation is atomic for DDL
statements as well as for DML statements. In this situation,
the mysql.gtid_executed
table is a complete
record of the transactions applied on the slave.
Very shortly after the replicated transaction is committed on
the slave, the GTID is externalized non-atomically by adding
it to the set of GTIDs in the
gtid_executed
system variable
(@@GLOBAL.gtid_executed
) for the slave. As
for the master, this GTID set contains a representation of the
set of all committed GTID transactions. If binary logging is
disabled on the slave, the
mysql.gtid_executed
table is also a
complete record of the transactions applied on the slave. If
binary logging is enabled on the slave, meaning that some
GTIDs are only recorded in the binary log, the set of GTIDs in
the gtid_executed
system
variable is the only complete record.
Client transactions that are completely filtered out on the master
are not assigned a GTID, therefore they are not added to the set
of transactions in the
gtid_executed
system variable, or
added to the mysql.gtid_executed
table.
However, the GTIDs of replicated transactions that are completely
filtered out on the slave are persisted. If binary logging is
enabled on the slave, the filtered-out transaction is written to
the binary log as a Gtid_log_event
followed by
an empty transaction containing only BEGIN
and
COMMIT
statements. If binary logging is
disabled, the GTID of the filtered-out transaction is written to
the mysql.gtid_executed
table. Preserving the
GTIDs for filtered-out transactions ensures that the
mysql.gtid_executed
table and the set of GTIDs
in the gtid_executed
system
variable can be compressed. It also ensures that the filtered-out
transactions are not retrieved again if the slave reconnects to
the master, as explained in
Section 17.1.3.3, “GTID Auto-Positioning”.
On a multithreaded replication slave (with
slave_parallel_workers > 0
),
transactions can be applied in parallel, so replicated
transactions can commit out of order (unless
slave_preserve_commit_order=1
is
set). When that happens, the set of GTIDs in the
gtid_executed
system variable
will contain multiple GTID ranges with gaps between them. (On a
master or a single-threaded replication slave, there will be
monotonically increasing GTIDs without gaps between the numbers.)
Gaps on multithreaded replication slaves only occur among the most
recently applied transactions, and are filled in as replication
progresses. When replication threads are stopped cleanly using the
STOP SLAVE
statement, ongoing
transactions are applied so that the gaps are filled in. In the
event of a shutdown such as a server failure or the use of the
KILL
statement to stop replication
threads, the gaps might remain.
The typical scenario is that the server generates a new GTID for a committed transaction. However, GTIDs can also be assigned to other changes besides transactions, and in some cases a single transaction can be assigned multiple GTIDs.
Every database change (DDL or DML) that is written to the binary
log is assigned a GTID. This includes changes that are
autocommitted, and changes that are committed using
BEGIN
and COMMIT
or
START TRANSACTION
statements. A GTID is also
assigned to the creation, alteration, or deletion of a database,
and of a non-table database object such as a procedure,
function, trigger, event, view, user, role, or grant.
Non-transactional updates as well as transactional updates are assigned GTIDs. In addition, for a non-transactional update, if a disk write failure occurs while attempting to write to the binary log cache and a gap is therefore created in the binary log, the resulting incident log event is assigned a GTID.
When a table is automatically dropped by a generated statement
in the binary log, a GTID is assigned to the statement.
Temporary tables are dropped automatically when a replication
slave begins to apply events from a master that has just been
started, and when statement-based replication is in use
(binlog_format=STATEMENT
) and a
user session that has open temporary tables disconnects. Tables
that use the MEMORY
storage engine
are deleted automatically the first time they are accessed after
the server is started, because rows might have been lost during
the shutdown.
When a transaction is not written to the binary log on the
server of origin, the server does not assign a GTID to it. This
includes transactions that are rolled back and transactions that
are executed while binary logging is disabled on the server of
origin, either globally (with --skip-log-bin
specified in the server's configuration) or for the session
(SET @@SESSION.sql_log_bin = 0
). This also
includes no-op transactions when row-based replication is in use
(binlog_format=ROW
).
XA transactions are assigned separate GTIDs for the XA
PREPARE
phase of the transaction and the XA
COMMIT
or XA ROLLBACK
phase of the
transaction. XA transactions are persistently prepared so that
users can commit them or roll them back in the case of a failure
(which in a replication topology might include a failover to
another server). The two parts of the transaction are therefore
replicated separately, so they must have their own GTIDs, even
though a non-XA transaction that is rolled back would not have a
GTID.
In the following special cases, a single statement can generate multiple transactions, and therefore be assigned multiple GTIDs:
A stored procedure is invoked that commits multiple transactions. One GTID is generated for each transaction that the procedure commits.
A multi-table DROP TABLE
statement drops tables of different types. Multiple GTIDs
can be generated if any of the tables use storage engines
that do not support atomic DDL, or if any of the tables are
temporary tables.
A
CREATE
TABLE ... SELECT
statement is issued when
row-based replication is in use
(binlog_format=ROW
). One
GTID is generated for the CREATE
TABLE
action and one GTID is generated for the
row-insert actions.
By default, for new transactions committed in user sessions, the
server automatically generates and assigns a new GTID. When the
transaction is applied on a replication slave, the GTID from the
server of origin is preserved. You can change this behavior by
setting the session value of the
gtid_next
system variable:
When gtid_next
is set to
AUTOMATIC
, which is the default, and a
transaction is committed and written to the binary log, the
server automatically generates and assigns a new GTID. If a
transaction is rolled back or not written to the binary log
for another reason, the server does not generate and assign
a GTID.
If you set gtid_next
to a
valid GTID (consisting of a UUID and a transaction sequence
number, separated by a colon), the server assigns that GTID
to your transaction. This GTID is assigned and added to
gtid_executed
even when the
transaction is not written to the binary log, or when the
transaction is empty.
Note that after you set
gtid_next
to a specific GTID,
and the transaction has been committed or rolled back, an
explicit SET @@SESSION.gtid_next
statement
must be issued before any other statement. You can use this to
set the GTID value back to AUTOMATIC
if you
do not want to assign any more GTIDs explicitly.
When replication applier threads apply replicated transactions,
they use this technique, setting
@@SESSION.gtid_next
explicitly to the GTID of
the replicated transaction as assigned on the server of origin.
This means the GTID from the server of origin is retained,
rather than a new GTID being generated and assigned by the
replication slave. It also means the GTID is added to
gtid_executed
on the
replication slave even when binary logging or slave update
logging is disabled on the slave, or when the transaction is a
no-op or is filtered out on the slave.
It is possible for a client to simulate a replicated transaction
by setting @@SESSION.gtid_next
to a specific
GTID before executing the transaction. This technique is used by
mysqlbinlog to generate a dump of the binary
log that the client can replay to preserve GTIDs. A simulated
replicated transaction committed through a client is completely
equivalent to a replicated transaction committed through a
replication applier thread, and they cannot be distinguished
after the fact.
The set of GTIDs in the
gtid_purged
system variable
(@@GLOBAL.gtid_purged
) contains the GTIDs of
all the transactions that have been committed on the server, but
do not exist in any binary log file on the server.
gtid_purged
is a subset of
gtid_executed
. The following
categories of GTIDs are in
gtid_purged
:
GTIDs of replicated transactions that were committed with binary logging disabled on the slave.
GTIDs of transactions that were written to a binary log file that has now been purged.
GTIDs that were added explicitly to the set by the statement
SET @@GLOBAL.gtid_purged
.
You can change the value of
gtid_purged
in order to record
on the server that the transactions in a certain GTID set have
been applied, although they do not exist in any binary log on
the server. When you add GTIDs to
gtid_purged
, they are also
added to gtid_executed
. An
example use case for this action is when you are restoring a
backup of one or more databases on a server, but you do not have
the relevant binary logs containing the transactions on the
server. Before MySQL 8.0, you could only change the value of
gtid_purged
when
gtid_executed
(and therefore
gtid_purged
) was empty. From
MySQL 8.0, this restriction does not apply, and you can also
choose whether to replace the whole GTID set in
gtid_purged
with a specified
GTID set, or to add a specified GTID set to the GTIDs already in
gtid_purged
. For details of how
to do this, see the description for
gtid_purged
.
The sets of GTIDs in the
gtid_executed
and
gtid_purged
system variables
are initialized when the server starts. Every binary log file
begins with the event
Previous_gtids_log_event
, which contains the
set of GTIDs in all previous binary log files (composed from the
GTIDs in the preceding file's
Previous_gtids_log_event
, and the GTIDs of
every Gtid_log_event
in the preceding file
itself). The contents of
Previous_gtids_log_event
in the oldest and
most recent binary log files are used to compute the
gtid_executed
and
gtid_purged
sets at server
startup:
gtid_executed
is computed
as the union of the GTIDs in
Previous_gtids_log_event
in the most
recent binary log file, the GTIDs of transactions in that
binary log file, and the GTIDs stored in the
mysql.gtid_executed
table. This GTID set
contains all the GTIDs that have been used (or added
explicitly to gtid_purged
)
on the server, whether or not they are currently in a binary
log file on the server. It does not include the GTIDs for
transactions that are currently being processed on the
server (@@GLOBAL.gtid_owned
).
gtid_purged
is computed by
first adding the GTIDs in
Previous_gtids_log_event
in the most
recent binary log file and the GTIDs of transactions in that
binary log file. This step gives the set of GTIDs that are
currently, or were once, recorded in a binary log on the
server (gtids_in_binlog
). Next, the GTIDs
in Previous_gtids_log_event
in the oldest
binary log file are subtracted from
gtids_in_binlog
. This step gives the set
of GTIDs that are currently recorded in a binary log on the
server (gtids_in_binlog_not_purged
).
Finally, gtids_in_binlog_not_purged
is
subtracted from
gtid_executed
. The result
is the set of GTIDs that have been used on the server, but
are not currently recorded in a binary log file on the
server, and this result is used to initialize
gtid_purged
.
If binary logs from MySQL 5.7.7 or older are involved in these
computations, it is possible for incorrect GTID sets to be
computed for gtid_executed
and
gtid_purged
, and they remain
incorrect even if the server is later restarted. For details,
see the description for the
binlog_gtid_simple_recovery
system variable, which controls how the binary logs are iterated
to compute the GTID sets. If one of the situations described
there applies on a server, set
binlog_gtid_simple_recovery=FALSE
in the server's configuration file before starting it. That
setting makes the server iterate all the binary log files (not
just the newest and oldest) to find where GTID events start to
appear. This process could take a long time if the server has a
large number of binary log files without GTID events.
If you need to reset the GTID execution history on a server, use
the RESET MASTER
statement. For
example, you might need to do this after carrying out test
queries to verify a replication setup on new GTID-enabled
servers, or when you want to join a new server to a replication
group but it contains some unwanted local transactions that are
not accepted by Group Replication.
Use RESET MASTER
with caution
to avoid losing any wanted GTID execution history and binary
log files.
Before issuing RESET MASTER
,
ensure that you have backups of the server's binary log files
and binary log index file, if any, and obtain and save the GTID
set held in the global value of the
gtid_executed
system variable
(for example, by issuing a SELECT
@@GLOBAL.gtid_executed
statement and saving the
results). If you are removing unwanted transactions from that
GTID set, use mysqlbinlog to examine the
contents of the transactions to ensure that they have no value,
contain no data that must be saved or replicated, and did not
result in data changes on the server.
When you issue RESET MASTER
, the
following reset operations are carried out:
The value of the
gtid_purged
system variable
is set to an empty string (''
).
The global value (but not the session value) of the
gtid_executed
system
variable is set to an empty string.
The mysql.gtid_executed
table is cleared
(see
mysql.gtid_executed Table).
If the server has binary logging enabled, the existing binary log files are deleted and the binary log index file is cleared.
Note that RESET MASTER
is the
method to reset the GTID execution history even if the server is
a replication slave where binary logging is disabled.
RESET SLAVE
has no effect on the
GTID execution history.
GTIDs replace the file-offset pairs previously required to determine points for starting, stopping, or resuming the flow of data between master and slave. When GTIDs are in use, all the information that the slave needs for synchronizing with the master is obtained directly from the replication data stream.
To start a slave using GTID-based replication, you do not include
MASTER_LOG_FILE
or
MASTER_LOG_POS
options in the
CHANGE MASTER TO
statement used to
direct the slave to replicate from a given master. These options
specify the name of the log file and the starting position within
the file, but with GTIDs the slave does not need this nonlocal
data. Instead, you need to enable the
MASTER_AUTO_POSITION
option. For full
instructions to configure and start masters and slaves using
GTID-based replication, see
Section 17.1.3.4, “Setting Up Replication Using GTIDs”.
The MASTER_AUTO_POSITION
option is disabled by
default. If multi-source replication is enabled on the slave, you
need to set the option for each applicable replication channel.
Disabling the MASTER_AUTO_POSITION
option again
makes the slave revert to file-based replication, in which case
you must also specify one or both of the
MASTER_LOG_FILE
or
MASTER_LOG_POS
options.
When a replication slave has GTIDs enabled
(GTID_MODE=ON
,
ON_PERMISSIVE,
or
OFF_PERMISSIVE
) and the
MASTER_AUTO_POSITION
option enabled,
auto-positioning is activated for connection to the master. The
master must have GTID_MODE=ON
set
in order for the connection to succeed. In the initial handshake,
the slave sends a GTID set containing the transactions that it has
already received, committed, or both. This GTID set is equal to
the union of the set of GTIDs in the
gtid_executed
system variable
(@@GLOBAL.gtid_executed
), and the set of GTIDs
recorded in the Performance Schema
replication_connection_status
table
as received transactions (the result of the statement
SELECT RECEIVED_TRANSACTION_SET FROM
PERFORMANCE_SCHEMA.replication_connection_status
).
The master responds by sending all transactions recorded in its
binary log whose GTID is not included in the GTID set sent by the
slave. To do this, the master first identifies the appropriate
binary log file to begin working with, by checking the
Previous_gtids_log_event
in the header of each
of its binary log files, starting with the most recent. When the
master finds the first Previous_gtids_log_event
which contains no transactions that the slave is missing, it
begins with that binary log file. This method is efficient and
only takes a significant amount of time if the slave is behind the
master by a large number of binary log files. The master then
reads the transactions in that binary log file and subsequent
files up to the current one, sending the transactions with GTIDs
that the slave is missing, and skipping the transactions that were
in the GTID set sent by the slave. The elapsed time until the
slave receives the first missing transaction depends on its offset
in the binary log file. This exchange ensures that the master only
sends the transactions with a GTID that the slave has not already
received or committed. If the slave receives transactions from
more than one master, as in the case of a diamond topology, the
auto-skip function ensures that the transactions are not applied
twice.
If any of the transactions that should be sent by the master have
been purged from the master's binary log, or added to the set of
GTIDs in the gtid_purged
system
variable by another method, the master sends the error
ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the
slave, and replication does not start. The GTIDs of the missing
purged transactions are identified and listed in the master's
error log in the warning message
ER_FOUND_MISSING_GTIDS. The slave cannot
recover automatically from this error because parts of the
transaction history that are needed to catch up with the master
have been purged. Attempting to reconnect without the
MASTER_AUTO_POSITION
option enabled only
results in the loss of the purged transactions on the slave. The
correct approach to recover from this situation is for the slave
to replicate the missing transactions listed in the
ER_FOUND_MISSING_GTIDS message from another
source, or for the slave to be replaced by a new slave created
from a more recent backup. Consider revising the binary log
expiration period
(binlog_expire_logs_seconds
) on
the master to ensure that the situation does not occur again.
If during the exchange of transactions it is found that the slave
has received or committed transactions with the master's UUID in
the GTID, but the master itself does not have a record of them,
the master sends the error
ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER to the
slave and replication does not start. This situation can occur if
a master that does not have
sync_binlog=1
set experiences a
power failure or operating system crash, and loses committed
transactions that have not yet been synchronized to the binary log
file, but have been received by the slave. The master and slave
can diverge if any clients commit transactions on the master after
it is restarted, which can lead to the situation where the master
and slave are using the same GTID for different transactions. The
correct approach to recover from this situation is to check
manually whether the master and slave have diverged. If the same
GTID is now in use for different transactions, you either need to
perform manual conflict resolution for individual transactions as
required, or remove either the master or the slave from the
replication topology. If the issue is only missing transactions on
the master, you can make the master into a slave instead, allow it
to catch up with the other servers in the replication topology,
and then make it a master again if needed.
This section describes a process for configuring and starting GTID-based replication in MySQL 8.0. This is a “cold start” procedure that assumes either that you are starting the replication master for the first time, or that it is possible to stop it; for information about provisioning replication slaves using GTIDs from a running master, see Section 17.1.3.5, “Using GTIDs for Failover and Scaleout”. For information about changing GTID mode on servers online, see Section 17.1.5, “Changing Replication Modes on Online Servers”.
The key steps in this startup process for the simplest possible GTID replication topology, consisting of one master and one slave, are as follows:
If replication is already running, synchronize both servers by making them read-only.
Stop both servers.
Restart both servers with GTIDs enabled and the correct options configured.
The mysqld options necessary to start the servers as described are discussed in the example that follows later in this section.
Instruct the slave to use the master as the replication data source and to use auto-positioning. The SQL statements needed to accomplish this step are described in the example that follows later in this section.
Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers where GTIDs are enabled, so backups taken before this point cannot be used with your new configuration.
Start the slave, then disable read-only mode on both servers, so that they can accept updates.
In the following example, two servers are already running as
master and slave, using MySQL's binary log position-based
replication protocol. If you are starting with new servers, see
Section 17.1.2.3, “Creating a User for Replication” for information about
adding a specific user for replication connections and
Section 17.1.2.1, “Setting the Replication Master Configuration” for
information about setting the
server_id
variable. The following
examples show how to store mysqld startup
options in server's option file, see
Section 4.2.2.2, “Using Option Files” for more information. Alternatively
you can use startup options when running
mysqld.
Most of the steps that follow require the use of the MySQL
root
account or another MySQL user account that
has the SUPER
privilege.
mysqladmin shutdown
requires
either the SUPER
privilege or the
SHUTDOWN
privilege.
Step 1: Synchronize the servers.
This step is only required when working with servers which are
already replicating without using GTIDs. For new servers proceed
to Step 3. Make the servers read-only by setting the
read_only
system variable to
ON
on each server by issuing the following:
mysql> SET @@GLOBAL.read_only = ON;
Wait for all ongoing transactions to commit or roll back. Then, allow the slave to catch up with the master. It is extremely important that you make sure the slave has processed all updates before continuing.
If you use binary logs for anything other than replication, for example to do point in time backup and restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally, wait for the server to purge all binary logs, and wait for any existing backup to expire.
It is important to understand that logs containing transactions without GTIDs cannot be used on servers where GTIDs are enabled. Before proceeding, you must be sure that transactions without GTIDs do not exist anywhere in the topology.
Step 2: Stop both servers.
Stop each server using mysqladmin as shown
here, where username
is the user name
for a MySQL user having sufficient privileges to shut down the
server:
shell> mysqladmin -uusername
-p shutdown
Then supply this user's password at the prompt.
Step 3: Start both servers with GTIDs enabled.
To enable GTID-based replication, each server must be started
with GTID mode enabled by setting the
gtid_mode
variable to
ON
, and with the
enforce_gtid_consistency
variable enabled to ensure that only statements which are safe
for GTID-based replication are logged. For example:
gtid_mode=ON enforce-gtid-consistency=ON
In addition, you should start slaves with the
--skip-slave-start
option before
configuring the slave settings. For more information on GTID
related options and variables, see
Section 17.1.6.5, “Global Transaction ID System Variables”.
It is not mandatory to have binary logging enabled in order to use
GTIDs when using the
mysql.gtid_executed Table. Masters
must always have binary logging enabled in order to be able to
replicate. However, slave servers can use GTIDs but without binary
logging. If you need to disable binary logging on a slave server,
you can do this by specifying the
--skip-log-bin
and --log-slave-updates=OFF
options
for the slave.
Step 4: Configure the slave to use GTID-based auto-positioning.
Tell the slave to use the master with GTID based transactions as
the replication data source, and to use GTID-based
auto-positioning rather than file-based positioning. Issue a
CHANGE MASTER TO
statement on the
slave, including the MASTER_AUTO_POSITION
option in the statement to tell the slave that the master's
transactions are identified by GTIDs.
You may also need to supply appropriate values for the master's host name and port number as well as the user name and password for a replication user account which can be used by the slave to connect to the master; if these have already been set prior to Step 1 and no further changes need to be made, the corresponding options can safely be omitted from the statement shown here.
mysql>CHANGE MASTER TO
>MASTER_HOST =
>host
,MASTER_PORT =
>port
,MASTER_USER =
>user
,MASTER_PASSWORD =
>password
,MASTER_AUTO_POSITION = 1;
Neither the MASTER_LOG_FILE
option nor the
MASTER_LOG_POS
option may be used with
MASTER_AUTO_POSITION
set equal to 1. Attempting
to do so causes the CHANGE MASTER
TO
statement to fail with an error.
Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point, so that you are not left without a usable backup.
For instance, you can execute FLUSH
LOGS
on the server where you are taking backups. Then
either explicitly take a backup or wait for the next iteration of
any periodic backup routine you may have set up.
Step 6: Start the slave and disable read-only mode. Start the slave like this:
mysql> START SLAVE;
The following step is only necessary if you configured a server to be read-only in Step 1. To allow the server to begin accepting updates again, issue the following statement:
mysql> SET @@GLOBAL.read_only = OFF;
GTID-based replication should now be running, and you can begin (or resume) activity on the master as before. Section 17.1.3.5, “Using GTIDs for Failover and Scaleout”, discusses creation of new slaves when using GTIDs.
There are a number of techniques when using MySQL Replication with Global Transaction Identifiers (GTIDs) for provisioning a new slave which can then be used for scaleout, being promoted to master as necessary for failover. This section describes the following techniques:
Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in general management of the replication data flow and of failover activities in particular. Each identifier uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role in applying changes to the database: the server automatically skips any transaction having an identifier which the server recognizes as one that it has processed before. This behavior is critical for automatic replication positioning and correct failover.
The mapping between identifiers and sets of events comprising a given transaction is captured in the binary log. This poses some challenges when provisioning a new server with data from another existing server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from the old server to the new one, and to preserve the relationship between the identifiers and the actual events. This is neccessary for restoring a slave that is immediately available as a candidate to become a new master on failover or switchover.
Simple replication. The easiest way to reproduce all identifiers and transactions on a new server is to make the new server into the slave of a master that has the entire execution history, and enable global transaction identifiers on both servers. See Section 17.1.3.4, “Setting Up Replication Using GTIDs”, for more information.
Once replication is started, the new server copies the entire binary log from the master and thus obtains all information about all GTIDs.
This method is simple and effective, but requires the slave to read the binary log from the master; it can sometimes take a comparatively long time for the new slave to catch up with the master, so this method is not suitable for fast failover or restoring from backup. This section explains how to avoid fetching all of the execution history from the master by copying binary log files to the new server.
Copying data and transactions to the slave. Executing the entire transaction history can be time-consuming when the source server has processed a large number of transactions previously, and this can represent a major bottleneck when setting up a new replication slave. To eliminate this requirement, a snapshot of the data set, the binary logs and the global transaction information the source server contains can be imported to the new slave. The source server can be either the master or the slave, but you must ensure that the source has processed all required transactions before copying the data.
There are several variants of this method, the difference being in the manner in which data dumps and transactions from binary logs are transfered to the slave, as outlined here:
Create a dump file using mysqldump on
the source server. Set the mysqldump
option --master-data
(with the default value of 1) to include a
CHANGE MASTER TO
statement with binary logging information. Set the
--set-gtid-purged
option to AUTO
(the default) or
ON
, to include information about
executed transactions in the dump. Then use the
mysql client to import the dump file
on the target server.
Alternatively, create a data snapshot of the source
server using raw data files, then copy these files to
the target server, following the instructions in
Section 17.1.2.5, “Choosing a Method for Data Snapshots”. If you
use InnoDB
tables, you can
use the mysqlbackup command from the
MySQL Enterprise Backup component to produce a
consistent snapshot. This command records the log name
and offset corresponding to the snapshot to be used on
the slave. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise
subscription. See
Section 30.2, “MySQL Enterprise Backup Overview” for detailed
information.
Alternatively, stop both the source and target servers,
copy the contents of the source's data directory to the
new slave's data directory, then restart the slave.
If you use this method, the slave must be configured for
GTID-based replication, in other words with
gtid_mode=ON
. For
instructions and important information for this method,
see
Section 17.1.2.8, “Adding Slaves to a Replication Environment”.
If the source server has a complete transaction history in
its binary logs (that is, the GTID set
@@GLOBAL.gtid_purged
is empty), you can
use these methods.
Import the binary logs from the source server to the new
slave using mysqlbinlog, with the
--read-from-remote-server
and
--read-from-remote-master
options.
Alternatively, copy the source server's binary log files
to the slave. You can make copies from the slave using
mysqlbinlog with the
--read-from-remote-server
and --raw
options.
These can be read into the slave by using
mysqlbinlog >
(without the file
--raw
option) to export the binary log files to SQL files,
then passing these files to the mysql
client for processing. Ensure that all of the binary log
files are processed using a single
mysql process, rather than multiple
connections. For example:
shell> mysqlbinlog copied-binlog.000001 copied-binlog.000002 | mysql -u root -p
For more information, see Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.
This method has the advantage that a new server is available almost immediately; only those transactions that were committed while the snapshot or dump file was being replayed still need to be obtained from the existing master. This means that the slave's availability is not instantanteous, but only a relatively short amount of time should be required for the slave to catch up with these few remaining transactions.
Copying over binary logs to the target server in advance is usually faster than reading the entire transaction execution history from the master in real time. However, it may not always be feasible to move these files to the target when required, due to size or other considerations. The two remaining methods for provisioning a new slave discussed in this section use other means to transfer information about transactions to the new slave.
Injecting empty transactions.
The master's global
gtid_executed
variable contains
the set of all transactions executed on the master. Rather than
copy the binary logs when taking a snapshot to provision a new
server, you can instead note the content of
gtid_executed
on the server from which the
snapshot was taken. Before adding the new server to the
replication chain, simply commit an empty transaction on the new
server for each transaction identifier contained in the
master's gtid_executed
, like this:
SET GTID_NEXT='aaa-bbb-ccc-ddd:N'; BEGIN; COMMIT; SET GTID_NEXT='AUTOMATIC';
Once all transaction identifiers have been reinstated in this way
using empty transactions, you must flush and purge the
slave's binary logs, as shown here, where
N
is the nonzero suffix of the current
binary log file name:
FLUSH LOGS;
PURGE BINARY LOGS TO 'master-bin.00000N
';
You should do this to prevent this server from flooding the
replication stream with false transactions in the event that it is
later promoted to master. (The FLUSH
LOGS
statement forces the creation of a new binary log
file; PURGE BINARY LOGS
purges the
empty transactions, but retains their identifiers.)
This method creates a server that is essentially a snapshot, but in time is able to become a master as its binary log history converges with that of the replication stream (that is, as it catches up with the master or masters). This outcome is similar in effect to that obtained using the remaining provisioning method, which we discuss in the next few paragraphs.
Excluding transactions with gtid_purged.
The master's global
gtid_purged
variable contains
the set of all transactions that have been purged from the
master's binary log. As with the method discussed
previously (see
Injecting empty transactions), you can
record the value of
gtid_executed
on the server
from which the snapshot was taken (in place of copying the
binary logs to the new server). Unlike the previous method,
there is no need to commit empty transactions (or to issue
PURGE BINARY LOGS
); instead, you
can set gtid_purged
on the
slave directly, based on the value of
gtid_executed
on the server
from which the backup or snapshot was taken.
As with the method using empty transactions, this method creates a server that is functionally a snapshot, but in time is able to become a master as its binary log history converges with that of the replication master or group.
Restoring GTID mode slaves. When restoring a slave in a GTID based replication setup that has encountered an error, injecting an empty transaction may not solve the problem because an event does not have a GTID.
Use mysqlbinlog to find the next transaction,
which is probably the first transaction in the next log file after
the event. Copy everything up to the COMMIT
for
that transaction, being sure to include the SET
@@SESSION.gtid_next
. Even if you are not using row-based
replication, you can still run binary log row events in the
command line client.
Stop the slave and run the transaction you copied. The
mysqlbinlog output sets the delimiter to
/*!*/;
, so set it back:
mysql> DELIMITER ;
Restart replication from the correct position automatically:
mysql>SET GTID_NEXT=automatic;
mysql>RESET SLAVE;
mysql>START SLAVE;
Because GTID-based replication is dependent on transactions, some features otherwise available in MySQL are not supported when using it. This section provides information about restrictions on and limitations of replication with GTIDs.
Updates involving nontransactional storage engines.
When using GTIDs, updates to tables using nontransactional
storage engines such as MyISAM
cannot be made in the same statement or transaction as updates
to tables using transactional storage engines such as
InnoDB
.
This restriction is due to the fact that updates to tables that use a nontransactional storage engine mixed with updates to tables that use a transactional storage engine within the same transaction can result in multiple GTIDs being assigned to the same transaction.
Such problems can also occur when the master and the slave use different storage engines for their respective versions of the same table, where one storage engine is transactional and the other is not. Also be aware that triggers that are defined to operate on nontransactional tables can be the cause of these problems.
In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is broken, with the result that GTID-based replication cannot function correctly.
CREATE TABLE ... SELECT statements.
CREATE
TABLE ... SELECT
statements are not allowed when using
GTID-based replication. When
binlog_format
is set to
STATEMENT, a CREATE TABLE ... SELECT
statement is recorded in the binary log as one transaction with
one GTID, but if ROW format is used, the statement is recorded
as two transactions with two GTIDs. If a master used STATEMENT
format and a slave used ROW format, the slave would be unable to
handle the transaction correctly, therefore the CREATE
TABLE ... SELECT
statement is disallowed with GTIDs to
prevent this scenario.
Temporary tables.
When binlog_format
is set to
STATEMENT
,
CREATE TEMPORARY
TABLE
and
DROP TEMPORARY
TABLE
statements cannot be used inside transactions,
procedures, functions, and triggers when GTIDs are in use on the
server (that is, when the
enforce_gtid_consistency
system
variable is set to ON
). They can be used
outside these contexts when GTIDs are in use, provided that
autocommit=1
is set. From MySQL
8.0.13, when binlog_format
is
set to ROW
or MIXED
,
CREATE TEMPORARY
TABLE
and
DROP TEMPORARY
TABLE
statements are allowed inside a transaction,
procedure, function, or trigger when GTIDs are in use. The
statements are not written to the binary log and are therefore
not replicated to slaves. The use of row-based replication means
that the slaves remain in sync without the need to replicate
temporary tables. If the removal of these statements from a
transaction results in an empty transaction, the transaction is
not written to the binary log.
Preventing execution of unsupported statements.
To prevent execution of statements that would cause GTID-based
replication to fail, all servers must be started with the
--enforce-gtid-consistency
option
when enabling GTIDs. This causes statements of any of the types
discussed previously in this section to fail with an error.
Note that
--enforce-gtid-consistency
only
takes effect if binary logging takes place for a statement. If
binary logging is disabled on the server, or if statements are not
written to the binary log because they are removed by a filter,
GTID consistency is not checked or enforced for the statements
that are not logged.
For information about other required startup options when enabling GTIDs, see Section 17.1.3.4, “Setting Up Replication Using GTIDs”.
Skipping transactions.
sql_slave_skip_counter
is not
supported when using GTIDs. If you need to skip transactions,
use the value of the master's
gtid_executed
variable instead.
For instructions, see
Section 17.1.7.3, “Skipping Transactions”.
Ignoring servers.
The IGNORE_SERVER_IDS option of the CHANGE
MASTER TO
statement is deprecated when using GTIDs,
because transactions that have already been applied are
automatically ignored. Before starting GTID-based replication,
check for and clear all ignored server ID lists that have
previously been set on the servers involved. The
SHOW SLAVE STATUS
statement,
which can be issued for individual channels, displays the list
of ignored server IDs if there is one. If there is no list, the
Replicate_Ignore_Server_Ids
field is blank.
GTID mode and mysqldump. It is possible to import a dump made using mysqldump into a MySQL server running with GTID mode enabled, provided that there are no GTIDs in the target server's binary log.
GTID mode and mysql_upgrade.
Prior to MySQL 8.0.16, when the server is running with global
transaction identifiers (GTIDs) enabled
(gtid_mode=ON
), do not enable
binary logging by mysql_upgrade (the
--write-binlog
option). As
of MySQL 8.0.16, the server performs the entire MySQL upgrade
procedure, but disables binary logging during the upgrade, so
there is no issue.
MySQL includes some built-in (native) functions for use with GTID-based replication. These functions are as follows:
GTID_SUBSET(set1
,set2
)
Given two sets of global transaction identifiers
set1
and
set2
, returns true if all GTIDs
in set1
are also in
set2
. Returns false otherwise.
GTID_SUBTRACT(set1
,set2
)
Given two sets of global transaction identifiers
set1
and
set2
, returns only those GTIDs
from set1
that are not in
set2
.
WAIT_FOR_EXECUTED_GTID_SET(gtid_set
[,
timeout
])
Wait until the server has applied all of the transactions
whose global transaction identifiers are contained in
gtid_set
. The optional timeout
stops the function from waiting after the specified number
of seconds have elapsed.
For details of these functions, see Section 12.18, “Functions Used with Global Transaction Identifiers (GTIDs)”.
You can define your own stored functions to work with GTIDs. For
information on defining stored functions, see
Chapter 24, Stored Objects. The following examples show some
useful stored functions that can be created based on the built-in
GTID_SUBSET()
and
GTID_SUBTRACT()
functions.
Note that in these stored functions, the delimiter command has been used to change the MySQL statement delimiter to a vertical bar, as follows:
mysql> delimiter |
All of these functions take string representations of GTID sets as arguments, so GTID sets must always be quoted when used with them.
This function returns nonzero (true) if two GTID sets are the same set, even if they are not formatted in the same way.
CREATE FUNCTION GTID_IS_EQUAL(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT) RETURNS INT RETURN GTID_SUBSET(gtid_set_1, gtid_set_2) AND GTID_SUBSET(gtid_set_2, gtid_set_1)|
This function returns nonzero (true) if two GTID sets are disjoint.
CREATE FUNCTION GTID_IS_DISJOINT(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT) RETURNS INT RETURN GTID_SUBSET(gtid_set_1, GTID_SUBTRACT(gtid_set_1, gtid_set_2))|
This function returns nonzero (true) if two GTID sets are
disjoint, and sum
is the union of the two sets.
CREATE FUNCTION GTID_IS_DISJOINT_UNION(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT, sum LONGTEXT) RETURNS INT RETURN GTID_IS_EQUAL(GTID_SUBTRACT(sum, gtid_set_1), gtid_set_2) AND GTID_IS_EQUAL(GTID_SUBTRACT(sum, gtid_set_2), gtid_set_1)|
This function returns a normalized form of the GTID set, in all uppercase, with no whitespace and no duplicates. The UUIDs are arranged in alphabetic order and intervals are arranged in numeric order.
CREATE FUNCTION GTID_NORMALIZE(g LONGTEXT) RETURNS LONGTEXT RETURN GTID_SUBTRACT(g, '')|
This function returns the union of two GTID sets.
CREATE FUNCTION GTID_UNION(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT) RETURNS LONGTEXT RETURN GTID_NORMALIZE(CONCAT(gtid_set_1, ',', gtid_set_2))|
This function returns the intersection of two GTID sets.
CREATE FUNCTION GTID_INTERSECTION(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT) RETURNS LONGTEXT RETURN GTID_SUBTRACT(gtid_set_1, GTID_SUBTRACT(gtid_set_1, gtid_set_2))|
This function returns the symmetric difference between two GTID
sets, that is, the GTIDs that exist in
gtid_set_1
but not in
gtid_set_2
, and also the GTIDs that exist in
gtid_set_2
but not in
gtid_set_1
.
CREATE FUNCTION GTID_SYMMETRIC_DIFFERENCE(gtid_set_1 LONGTEXT, gtid_set_2 LONGTEXT) RETURNS LONGTEXT RETURN GTID_SUBTRACT(CONCAT(gtid_set_1, ',', gtid_set_2), GTID_INTERSECTION(gtid_set_1, gtid_set_2))|
This function removes from a GTID set all the GTIDs from a
specified origin, and returns the remaining GTIDs, if any. The
UUID is the identifier used by the server where the transaction
originated, which is normally the
server_uuid
value.
CREATE FUNCTION GTID_SUBTRACT_UUID(gtid_set LONGTEXT, uuid TEXT) RETURNS LONGTEXT RETURN GTID_SUBTRACT(gtid_set, CONCAT(UUID, ':1-', (1 << 63) - 2))|
This function reverses the previously listed function to return only those GTIDs from the GTID set that originate from the server with the specified identifier (UUID).
CREATE FUNCTION GTID_INTERSECTION_WITH_UUID(gtid_set LONGTEXT, uuid TEXT) RETURNS LONGTEXT RETURN GTID_SUBTRACT(gtid_set, GTID_SUBTRACT_UUID(gtid_set, uuid))|
Example 17.1 Verifying that a replication slave is up to date
The built-in functions GTID_SUBSET
and
GTID_SUBTRACT
can be used to check that a
replication slave has applied at least every transaction that a
master has applied.
To perform this check with GTID_SUBSET
,
execute the following statement on the slave:
SELECT GTID_SUBSET(master_gtid_executed
,slave_gtid_executed
)
If this returns 0 (false), some GTIDs in
master_gtid_executed
are not present
in slave_gtid_executed
, so the master
has applied some transactions that the slave has not applied,
and the slave is therefore not up to date.
To perform the check with GTID_SUBTRACT
,
execute the following statement on the slave:
SELECT GTID_SUBTRACT(master_gtid_executed
,slave_gtid_executed
)
This statement returns any GTIDs that are in
master_gtid_executed
but not in
slave_gtid_executed
. If any GTIDs are
returned, the master has applied some transactions that the
slave has not applied, and the slave is therefore not up to
date.
Example 17.2 Backup and restore scenario
The stored functions GTID_IS_EQUAL
,
GTID_IS_DISJOINT
, and
GTID_IS_DISJOINT_UNION
could be used to
verify backup and restore operations involving multiple
databases and servers. In this example scenario,
server1
contains database
db1
, and server2
contains
database db2
. The goal is to copy database
db2
to server1
, and the
result on server1
should be the union of the
two databases. The procedure used is to back up
server2
using mysqlpump or
mysqldump, then restore this backup on
server1
.
Provided the backup program's option
--set-gtid-purged
was set to
ON
or the default of AUTO
,
the program's output contains a SET
@@GLOBAL.gtid_purged
statement that will add the
gtid_executed
set from
server2
to the
gtid_purged
set on
server1
. The
gtid_purged
set contains the
GTIDs of all the transactions that have been committed on a
server but do not exist in any binary log file on the server.
When database db2
is copied to
server1
, the GTIDs of the transactions
committed on server2
, which are not in the
binary log files on server1
, must be added to
server1
's
gtid_purged
set to make the set
complete.
The stored functions can be used to assist with the following steps in this scenario:
Use GTID_IS_EQUAL
to verify that the
backup operation computed the correct GTID set for the
SET @@GLOBAL.gtid_purged
statement. On
server2
, extract that statement from the
mysqlpump or mysqldump
output, and store the GTID set into a local variable, such
as $gtid_purged_set
. Then execute the
following statement:
server2> SELECT GTID_IS_EQUAL($gtid_purged_set, @@GLOBAL.gtid_executed);
If the result is 1, the two GTID sets are equal, and the set has been computed correctly.
Use GTID_IS_DISJOINT
to verify that the
GTID set in the mysqlpump or
mysqldump output does not overlap with
the gtid_executed
set on
server1
. If there is any overlap, with
identical GTIDs present on both servers for some reason, you
will see errors when copying database db2
to server1
. To check, on
server1
, extract and store the
gtid_purged
set from the
output into a local variable as above, then execute the
following statement:
server1> SELECT GTID_IS_DISJOINT($gtid_purged_set, @@GLOBAL.gtid_executed);
If the result is 1, there is no overlap between the two GTID sets, so no duplicate GTIDs are present.
Use GTID_IS_DISJOINT_UNION
to verify
that the restore operation resulted in the correct GTID
state on server1
. Before restoring the
backup, on server1
, obtain the existing
gtid_executed
set by
executing the following statement:
server1> SELECT @@GLOBAL.gtid_executed;
Store the result in a local variable
$original_gtid_executed
. Also store the
gtid_purged
set in a local
variable as described above. When the backup from
server2
has been restored onto
server1
, execute the following statement
to verify the GTID state:
server1> SELECT GTID_IS_DISJOINT_UNION($original_gtid_executed, $gtid_purged_set, @@GLOBAL.gtid_executed);
If the result is 1, the stored function has verified that
the original gtid_executed
set from server1
($original_gtid_executed
) and the
gtid_purged
set that was
added from server2
($gtid_purged_set
) have no overlap, and
also that the updated
gtid_executed
set on
server1
now consists of the previous
gtid_executed
set from
server1
plus the
gtid_purged
set from
server2
, which is the desired result.
Ensure that this check is carried out before any further
transactions take place on server1
,
otherwise the new transactions in the
gtid_executed
set will
cause it to fail.
Example 17.3 Selecting the most up-to-date slave for manual failover
The stored function GTID_UNION
could be
used to identify the most up-to-date replication slave from a
set of slaves, in order to perform a manual failover operation
after a replication master has stopped unexpectedly. If some of
the slaves are experiencing replication lag, this stored
function can be used to compute the most up-to-date slave
without waiting for all the slaves to apply their existing relay
logs, and therefore to minimize the failover time. The function
can return the union of the
gtid_executed
set on each slave
with the set of transactions received by the slave, which is
recorded in the Performance Schema table
replication_connection_status
. You
can compare these results to find which slave's record of
transactions is the most up-to-date, even if not all of the
transactions have been committed yet.
On each replication slave, compute the complete record of transactions by issuing the following statement:
SELECT GTID_UNION(RECEIVED_TRANSACTION_SET, @@GLOBAL.gtid_executed) FROM performance_schema.replication_connection_status WHERE channel_name = 'name';
You can then compare the results from each slave to see which one has the most up-to-date record of transactions, and use this slave as the new replication master.
Example 17.4 Checking for extraneous transactions on a replication slave
The stored function GTID_SUBTRACT_UUID
could be used to check whether a replication slave has received
transactions that did not originate from its designated master
or masters. If it has, there might be an issue with your
replication setup, or with a proxy, router, or load balancer.
This function works by removing from a GTID set all the GTIDs
from a specified originating server, and returning the remaining
GTIDs, if any.
For a replication slave with a single master, issue the
following statement, giving the identifier of the originating
replication master, which is normally the
server_uuid
value:
SELECT GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed, server_uuid_of_master);
If the result is not empty, the transactions returned are extra transactions that did not originate from the designated master.
For a slave in a multi-master replication topology, repeat the function, for example:
SELECT GTID_SUBTRACT_UUID(GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed, server_uuid_of_master_1), server_uuid_of_master_2);
If the result is not empty, the transactions returned are extra transactions that did not originate from any of the designated masters.
Example 17.5 Verifying that a server in a replication topology is read-only
The stored function
GTID_INTERSECTION_WITH_UUID
could be used
to verify that a server has not originated any GTIDs and is in a
read-only state. The function returns only those GTIDs from the
GTID set that originate from the server with the specified
identifier. If any of the transactions in the server's
gtid_executed
set have the
server's own identifier, the server itself originated those
transactions. You can issue the following statement on the
server to check:
SELECT GTID_INTERSECTION_WITH_UUID(@@GLOBAL.gtid_executed, my_server_uuid);
Example 17.6 Validating an additional slave in a multi-master replication setup
The stored function
GTID_INTERSECTION_WITH_UUID
could be used
to find out if a slave attached to a multi-master replication
setup has applied all the transactions originating from one
particular master. In this scenario, master1
and master2
are both masters and slaves and
replicate to each other. master2
also has its
own replication slave. The replication slave will also receive
and apply master1
's transactions if
master2
is configured with
log_slave_updates=ON
, but it
will not do so if master2
uses
log_slave_updates=OFF
. Whatever
the case, we currently only want to find out if the replication
slave is up to date with master2
. In this
situation, the stored function
GTID_INTERSECTION_WITH_UUID
can be used to
identify the transactions that master2
originated, discarding the transactions that
master2
has replicated from
master1
. The built-in function
GTID_SUBSET
can then be used to compare the
result to the gtid_executed
set
on the slave. If the slave is up to date with
master2
, the
gtid_executed
set on the slave
contains all the transactions in the intersection set (the
transactions that originated from master2
).
To carry out this check, store master2
's
gtid_executed
set,
master2
's server UUID, and the slave's
gtid_executed
set, into
client-side variables as follows:
$master2_gtid_executed := master2> SELECT @@GLOBAL.gtid_executed; $master2_server_uuid := master2> SELECT @@GLOBAL.server_uuid; $slave_gtid_executed := slave> SELECT @@GLOBAL.gtid_executed;
Then use GTID_INTERSECTION_WITH_UUID
and
GTID_SUBSET
with these variables as input,
as follows:
SELECT GTID_SUBSET(GTID_INTERSECTION_WITH_UUID($master2_gtid_executed, $master2_server_uuid), $slave_gtid_executed);
The server identifier from master2
($master2_server_uuid
) is used with
GTID_INTERSECTION_WITH_UUID
to identify and
return only those GTIDs from master2
's
gtid_executed
set that
originated on master2
, omitting those that
originated on master1
. The resulting GTID set
is then compared with the set of all executed GTIDs on the
slave, using GTID_SUBSET
. If this statement
returns nonzero (true), all the identified GTIDs from
master2
(the first set input) are also in the
slave's gtid_executed
set (the
second set input), meaning that the slave has replicated all the
transactions that originated from master2
.
MySQL multi-source replication enables a replication slave to receive transactions from multiple immediate masters in parallel. In a multi-source replication topology, a slave creates a replication channel for each master that it should receive transactions from. For more information on how replication channels function, see Section 17.2.3, “Replication Channels”.
You might choose to implement multi-source replication to achieve goals like these:
Backing up multiple servers to a single server.
Merging table shards.
Consolidating data from multiple servers to a single server.
Multi-source replication does not implement any conflict detection or resolution when applying transactions, and those tasks are left to the application if required.
Each channel on a multi-source replication slave must replicate from a different master. You cannot set up multiple replication channels from a single slave to a single master. This is because the server IDs of replication slaves must be unique in a replication topology. The master distinguishes slaves only by their server IDs, not by the names of the replication channels, so it cannot recognize different replication channels from the same slave.
A rmulti-source replication slave can also be set up as a
multi-threaded replication slave, by setting the
slave_parallel_workers
system
variable to a value greater than 0. When you do this on a
multi-source replication slave, each channel on the slave has the
specified number of applier threads, plus a coordinator thread to
manage them. You cannot configure the number of applier threads for
individual channels.
From MySQL 8.0, multi-source replication slaves can be configured with replication filters on specific replication channels. Channel specific replication filters can be used when the same database or table is present on multiple masters, and you only need the slave to replicate it from one master. For more information, see Section 17.2.5.4, “Replication Channel Based Filters”.
This section provides tutorials on how to configure masters and slaves for multi-source replication, how to start, stop and reset multi-source slaves, and how to monitor multi-source replication.
A multi-source replication topology requires at least two masters
and one slave configured. In these tutorials, we will assume you
have two masters master1
and
master2
, and a replication slave
slavehost
. The slave will replicate one
database from each of the masters, db1
from
master1
and db2
from
master2
.
Masters in a multi-source replication topology can be configured to use either GTID-based replication, or binary log position-based replication. See Section 17.1.3.4, “Setting Up Replication Using GTIDs” for how to configure a master using GTID-based replication. See Section 17.1.2.1, “Setting the Replication Master Configuration” for how to configure a master using file position based replication.
Slaves in a multi-source replication topology require
TABLE
repositories for the master info log and
relay log info log, which are the default in MySQL
8.0. Multi-source replication is not compatible with
file repositories, and the FILE
setting for the
master_info_repository
and
relay_log_info_repository
system
variables is now deprecated.
To modify an existing replication slave that is using a
FILE
repository for the slave status logs to
use TABLE
repositories, you can convert the
existing replication repositories dynamically by using the
mysql client to issue the following statements
on the slave:
mysql>STOP SLAVE;
mysql>SET GLOBAL master_info_repository = 'TABLE';
mysql>SET GLOBAL relay_log_info_repository = 'TABLE';
Create a suitable user account on all the masters that the slave
can use to connect. You can use the same account on all the
masters, or a different account on each. If you create an account
solely for the purposes of replication, that account needs only
the REPLICATION SLAVE
privilege.
For example, to set up a new user, ted
, that
can connect from the replication slave
slavehost
, use the mysql
client to issue these statements on each of the masters:
mysql>CREATE USER 'ted'@'slavehost' IDENTIFIED BY '
mysql>password
';GRANT REPLICATION SLAVE ON *.* TO 'ted'@'slavehost';
For more details, and important information on the default authentication plugin for new users from MySQL 8.0, see Section 17.1.2.3, “Creating a User for Replication”.
If the masters in the multi-source replication topology have existing data, it can save time to provision the slave with the relevant data before starting replication. In a multi-source replication topology, cloning or copying of the data directory cannot be used to provision the slave with data from all of the masters, and you might also want to replicate only specific databases from each master. The best strategy for provisioning such a slave is therefore to use mysqldump to create an appropriate dump file on each master, then use the mysql client to import the dump file on the slave.
If you are using GTID-based replication, you need to pay attention
to the SET @@GLOBAL.gtid_purged
statement that
mysqldump places in the dump output. This
statement transfers the GTIDs for the transactions executed on the
master to the slave, and the slave requires this information.
However, for any case more complex than provisioning one new,
empty slave from one master, you need to check what effect the
statement will have in the slave's MySQL release, and handle the
statement accordingly. The following guidance summarizes suitable
actions, but for more details, see the
mysqldump documentation.
The behavior of the SET @@GLOBAL.gtid_purged
statement written by mysqldump is different in
releases from MySQL 8.0 compared to MySQL 5.6 and 5.7. In MySQL
5.6 and 5.7, the statement replaces the value of
gtid_purged
on the slave, and
also in those releases that value can only be changed when the
slave's record of transactions with GTIDs (the
gtid_executed
set) is empty. In a
multi-source replication topology, you must therefore remove the
SET @@GLOBAL.gtid_purged
statement from the
dump output before replaying the dump files, because you will not
be able to apply a second or subsequent dump file including this
statement. Also note that for MySQL 5.6 and 5.7, this limitation
means all the dump files from the masters must be applied in a
single operation on a slave with an empty
gtid_executed
set. You can clear
a slave's GTID execution history by issuing
RESET MASTER
on the slave, but if
you have other, wanted transactions with GTIDs on the slave,
choose an alternative method of provisioning from those described
in Section 17.1.3.5, “Using GTIDs for Failover and Scaleout”.
From MySQL 8.0, the SET @@GLOBAL.gtid_purged
statement adds the GTID set from the dump file to the existing
gtid_purged
set on the slave. The
statement can therefore potentially be left in the dump output
when you replay the dump files on the slave, and the dump files
can be replayed at different times. However, it is important to
note that the value that is included by
mysqldump for the SET
@@GLOBAL.gtid_purged
statement includes the GTIDs of all
transactions in the gtid_executed
set on the master, even those that changed suppressed parts of the
database, or other databases on the server that were not included
in a partial dump. If you replay a second or subsequent dump file
on the slave that contains any of the same GTIDs (for example,
another partial dump from the same master, or a dump from another
master that has overlapping transactions), any SET
@@GLOBAL.gtid_purged
statement in the second dump file
will fail, and must therefore be removed from the dump output.
For masters from MySQL 8.0.17, as an alternative to removing the
SET @@GLOBAL.gtid_purged
statement, you may set
mysqldump's
--set-gtid-purged
option to
COMMENTED
to include the statement but
commented out, so that it is not actioned when you load the dump
file. If you are provisioning the slave with two partial dumps
from the same master, and the GTID set in the second dump is the
same as the first (so no new transactions have been executed on
the master in between the dumps), you can set
mysqldump's
--set-gtid-purged
option to
OFF
when you output the second dump file, to
omit the statement.
In the following provisioning example, we assume that the
SET @@GLOBAL.gtid_purged
statement cannot be
left in the dump output, and must be removed from the files and
handled manually. We also assume that there are no wanted
transactions with GTIDs on the slave before provisioning starts.
To create dump files for a database named
db1
on master1
and a
database named db2
on
master2
, run mysqldump
for master1
as follows:
mysqldump -u<user
> -p<password
> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db1 > dumpM1.sql
Then run mysqldump for
master2
as follows:
mysqldump -u<user
> -p<password
> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db2 > dumpM2.sql
Record the gtid_purged
value
that mysqldump added to each of the dump
files. For example, for dump files created on MySQL 5.6 or
5.7, you can extract the value like this:
cat dumpM1.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''
From MySQL 8.0, where the format has changed, you can extract the value like this:
cat dumpM1.sql | grep GTID_PURGED | perl -p0 -e 's#/\*.*?\*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | perl -p0 -e 's#/\*.*?\*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''
The result in each case should be a GTID set, for example:
master1: 2174B383-5441-11E8-B90A-C80AA9429562:1-1029 master2: 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695
Remove the line from each dump file that contains the
SET @@GLOBAL.gtid_purged
statement. For
example:
sed '/GTID_PURGED/d' dumpM1.sql > dumpM1_nopurge.sql
sed '/GTID_PURGED/d' dumpM2.sql > dumpM2_nopurge.sql
Use the mysql client to import each edited dump file into the slave. For example:
mysql -u<
user
> -p<password
> < dumpM1_nopurge.sqlmysql -u<
user
> -p<password
> < dumpM2_nopurge.sql
On the slave, issue RESET
MASTER
to clear the GTID execution history
(assuming, as explained above, that all the dump files have
been imported and that there are no wanted transactions with
GTIDs on the slave). Then issue a SET
@@GLOBAL.gtid_purged
statement to set the
gtid_purged
value to the
union of all the GTID sets from all the dump files, as you
recorded in Step 2. For example:
mysql>RESET MASTER;
mysql>SET @@GLOBAL.gtid_purged = "2174B383-5441-11E8-B90A-C80AA9429562:1-1029, 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695";
If there are, or might be, overlapping transactions between the GTID sets in the dump files, you can use the stored functions described in Section 17.1.3.7, “Stored Function Examples to Manipulate GTIDs” to check this beforehand and to calculate the union of all the GTID sets.
These steps assume you have enabled GTIDs for transactions on the
masters using gtid_mode=ON
,
created a replication user, ensured that the slave is using
TABLE
based replication repositories, and
provisioned the slave with data from the masters if appropriate.
Use the CHANGE MASTER TO
statement
to configure a replication channel for each master on the
replication slave (see Section 17.2.3, “Replication Channels”).
The FOR CHANNEL
clause is used to specify the
channel. For GTID-based replication, GTID auto-positioning is used
to synchronize with the master (see
Section 17.1.3.3, “GTID Auto-Positioning”). The
MASTER_AUTO_POSITION
option is set to specify
the use of auto-positioning.
For example, to add master1
and
master2
as masters to the replication slave,
use the mysql client to issue the
CHANGE MASTER TO
statement twice on
the slave, like this:
mysql>CHANGE MASTER TO MASTER_HOST="master1", MASTER_USER="ted", \ MASTER_PASSWORD="
mysql>password
", MASTER_AUTO_POSITION=1 FOR CHANNEL "master_1";CHANGE MASTER TO MASTER_HOST="master2", MASTER_USER="ted", \ MASTER_PASSWORD="
password
", MASTER_AUTO_POSITION=1 FOR CHANNEL "master_2";
For the full syntax of the CHANGE MASTER
TO
statement and other available options, see
Section 13.4.2.1, “CHANGE MASTER TO Statement”.
To make the replication slave replicate only database
db1
from master1
, and only
database db2
from master2
,
use the mysql client to issue the
CHANGE REPLICATION FILTER
statement
for each channel, like this:
mysql>CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "master_1";
mysql>CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "master_2";
For the full syntax of the CHANGE REPLICATION
FILTER
statement and other available options, see
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”.
These steps assume that binary logging is enabled on the master
(which is the default), the slave is using
TABLE
based replication repositories (which is
the default in MySQL 8.0), and that you have enabled
a replication user and noted the current binary log position. You
need to know the current MASTER_LOG_FILE
and
MASTER_LOG_POSITION
.
Use the CHANGE MASTER TO
statement
to configure a replication channel for each master on the
replication slave (see Section 17.2.3, “Replication Channels”).
The FOR CHANNEL
clause is used to specify the
channel. For example, to add master1
and
master2
as masters to the replication slave,
use the mysql client to issue the
CHANGE MASTER TO
statement twice on
the slave, like this:
mysql>CHANGE MASTER TO MASTER_HOST="master1", MASTER_USER="ted", MASTER_PASSWORD="
mysql>password
", \ MASTER_LOG_FILE='master1-bin.000006', MASTER_LOG_POS=628 FOR CHANNEL "master_1";CHANGE MASTER TO MASTER_HOST="master2", MASTER_USER="ted", MASTER_PASSWORD="
password
", \ MASTER_LOG_FILE='master2-bin.000018', MASTER_LOG_POS=104 FOR CHANNEL "master_2";
For the full syntax of the CHANGE MASTER
TO
statement and other available options, see
Section 13.4.2.1, “CHANGE MASTER TO Statement”.
To make the replication slave replicate only database
db1
from master1
, and only
database db2
from master2
,
use the mysql client to issue the
CHANGE REPLICATION FILTER
statement
for each channel, like this:
mysql>CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "master_1";
mysql>CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "master_2";
For the full syntax of the CHANGE REPLICATION
FILTER
statement and other available options, see
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”.
Once you have added channels for all of the replication masters,
issue a START SLAVE
statement to
start replication. When you have enabled multiple channels on a
slave, you can choose to either start all channels, or select a
specific channel to start. For example, to start the two channels
separately, use the mysql client to issue the
following statements:
mysql>START SLAVE FOR CHANNEL "master_1";
mysql>START SLAVE FOR CHANNEL "master_2";
For the full syntax of the START
SLAVE
command and other available options, see
Section 13.4.2.5, “START SLAVE Statement”.
To verify that both channels have started and are operating
correctly, you can issue SHOW SLAVE
STATUS
statements on the slave, for example:
mysql>SHOW SLAVE STATUS FOR CHANNEL "master_1"\G
mysql>SHOW SLAVE STATUS FOR CHANNEL "master_2"\G
The STOP SLAVE
statement can be
used to stop a multi-source replication slave. By default, if you
use the STOP SLAVE
statement on a
multi-source replication slave all channels are stopped.
Optionally, use the FOR CHANNEL
clause to stop only a
specific channel.
channel
To stop all currently configured replication channels:
STOP SLAVE;
To stop only a named channel, use a FOR CHANNEL
clause:
channel
STOP SLAVE FOR CHANNEL "master_1";
For the full syntax of the STOP
SLAVE
command and other available options, see
Section 13.4.2.6, “STOP SLAVE Statement”.
The RESET SLAVE
statement can be
used to reset a multi-source replication slave. By default, if you
use the RESET SLAVE
statement on a
multi-source replication slave all channels are reset. Optionally,
use the FOR CHANNEL
clause to reset only
a specific channel.
channel
To reset all currently configured replication channels:
RESET SLAVE;
To reset only a named channel, use a FOR CHANNEL
clause:
channel
RESET SLAVE FOR CHANNEL "master_1";
For GTID-based replication, note that RESET
SLAVE
has no effect on the slave's GTID execution
history. If you want to clear this, issue
RESET MASTER
on the slave.
RESET SLAVE
makes the slave forget
its replication position, and clears the relay log, but it does
not change any replication connection parameters (such as the
master host) or replication filters. If you want to remove these
for a channel, issue RESET SLAVE ALL
.
For the full syntax of the RESET
SLAVE
command and other available options, see
Section 13.4.2.4, “RESET SLAVE Statement”.
To monitor the status of replication channels the following options exist:
Using the replication Performance Schema tables. The first
column of these tables is Channel_Name
.
This enables you to write complex queries based on
Channel_Name
as a key. See
Section 26.12.11, “Performance Schema Replication Tables”.
Using SHOW SLAVE STATUS FOR CHANNEL
. By default, if
the channel
FOR CHANNEL
clause is not
used, this statement shows the slave status for all channels
with one row per channel. The identifier
channel
Channel_name
is added as a column in the
result set. If a FOR CHANNEL
clause is
provided, the results show the status of only the named
replication channel.
channel
The SHOW VARIABLES
statement does
not work with multiple replication channels. The information
that was available through these variables has been migrated to
the replication performance tables. Using a
SHOW VARIABLES
statement in a
topology with multiple channels shows the status of only the
default channel.
The error codes and messages that are issued when multi-source replication is enabled specify the channel that generated the error.
This section explains how to use the replication Performance Schema tables to monitor channels. You can choose to monitor all channels, or a subset of the existing channels.
To monitor the connection status of all channels:
mysql> SELECT * FROM replication_connection_status\G;
*************************** 1. row ***************************
CHANNEL_NAME: master_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
*************************** 2. row ***************************
CHANNEL_NAME: master_2
GROUP_NAME:
SOURCE_UUID: 7475e474-a223-11e4-a978-0811960cc264
THREAD_ID: 26
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 7475e474-a223-11e4-a978-0811960cc264:4-6
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
2 rows in set (0.00 sec)
In the above output there are two channels enabled, and as shown
by the CHANNEL_NAME
field they are called
master_1
and master_2
.
The addition of the CHANNEL_NAME
field
enables you to query the Performance Schema tables for a
specific channel. To monitor the connection status of a named
channel, use a WHERE
CHANNEL_NAME=
clause:
channel
mysql> SELECT * FROM replication_connection_status WHERE CHANNEL_NAME='master_1'\G
*************************** 1. row ***************************
CHANNEL_NAME: master_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
1 row in set (0.00 sec)
Similarly, the WHERE
CHANNEL_NAME=
clause
can be used to monitor the other replication Performance Schema
tables for a specific channel. For more information, see
Section 26.12.11, “Performance Schema Replication Tables”.
channel
This section describes how to change the mode of replication being used without having to take the server offline.
To be able to safely configure the replication mode of an online server it is important to understand some key concepts of replication. This section explains these concepts and is essential reading before attempting to modify the replication mode of an online server.
The modes of replication available in MySQL rely on different techniques for identifying transactions which are logged. The types of transactions used by replication are as follows:
GTID transactions are identified by a global transaction
identifier (GTID) in the form UUID:NUMBER
.
Every GTID transaction in a log is always preceded by a
Gtid_log_event
. GTID transactions can be
addressed using either the GTID or using the file name and
position.
Anonymous transactions do not have a GTID assigned, and MySQL
ensures that every anonymous transaction in a log is preceded
by an Anonymous_gtid_log_event
. In previous
versions, anonymous transactions were not preceded by any
particular event. Anonymous transactions can only be addressed
using file name and position.
When using GTIDs you can take advantage of auto-positioning and
automatic fail-over, as well as use
WAIT_FOR_EXECUTED_GTID_SET()
,
session_track_gtids
, and monitor
replicated transactions using Performance Schema tables. With
GTIDs enabled you cannot use
sql_slave_skip_counter
, instead
use empty transactions.
Transactions in a relay log that was received from a master
running a previous version of MySQL may not be preceded by any
particular event at all, but after being replayed and logged in
the slave's binary log, they are preceded with an
Anonymous_gtid_log_event
.
The ability to configure the replication mode online means that
the gtid_mode
and
enforce_gtid_consistency
variables are now both dynamic and can be set from a top-level
statement by an account that has privileges sufficient to set
global system variables. See
Section 5.1.9.1, “System Variable Privileges”. In MySQL 5.6 and
earlier, both of these variables could only be configured using
the appropriate option at server start, meaning that changes to
the replication mode required a server restart. In all versions
gtid_mode
could be set to
ON
or OFF
, which
corresponded to whether GTIDs were used to identify transactions
or not. When gtid_mode=ON
it is
not possible to replicate anonymous transactions, and when
gtid_mode=OFF
only anonymous
transactions can be replicated. When
gtid_mode=OFF_PERMISSIVE
then
new transactions are anonymous while
permitting replicated transactions to be either GTID or anonymous
transactions. When
gtid_mode=ON_PERMISSIVE
then
new transactions use GTIDs while permitting
replicated transactions to be either GTID or anonymous
transactions. This means it is possible to have a replication
topology that has servers using both anonymous and GTID
transactions. For example a master with
gtid_mode=ON
could be replicating
to a slave with
gtid_mode=ON_PERMISSIVE
. The
valid values for gtid_mode
are as
follows and in this order:
OFF
OFF_PERMISSIVE
ON_PERMISSIVE
ON
It is important to note that the state of
gtid_mode
can only be changed by
one step at a time based on the above order. For example, if
gtid_mode
is currently set to
OFF_PERMISSIVE
, it is possible to change to
OFF
or ON_PERMISSIVE
but not
to ON
. This is to ensure that the process of
changing from anonymous transactions to GTID transactions online
is correctly handled by the server. When you switch between
gtid_mode=ON
and
gtid_mode=OFF
, the GTID state (in
other words the value of
gtid_executed
) is persistent.
This ensures that the GTID set that has been applied by the server
is always retained, regardless of changes between types of
gtid_mode
.
The fields related to GTIDs display the correct information
regardless of the currently selected
gtid_mode
. This means that fields
which display GTID sets, such as
gtid_executed
,
gtid_purged
,
RECEIVED_TRANSACTION_SET
in the
replication_connection_status
Performance Schema table, and the GTID related results of
SHOW SLAVE STATUS
, now return the
empty string when there are no GTIDs present. Fields that display
a single GTID, such as CURRENT_TRANSACTION
in
the Performance Schema
replication_applier_status_by_worker
table, now display ANONYMOUS
when GTID
transactions are not being used.
Replication from a master using
gtid_mode=ON
provides the ability
to use auto-positioning, configured using the CHANGE
MASTER TO MASTER_AUTO_POSITION = 1;
statement. The
replication topology being used impacts on whether it is possible
to enable auto-positioning or not, as this feature relies on GTIDs
and is not compatible with anonymous transactions. An error is
generated if auto-positioning is enabled and an anonymous
transaction is encountered. It is strongly recommended to ensure
there are no anonymous transactions remaining in the topology
before enabling auto-positioning, see
Section 17.1.5.2, “Enabling GTID Transactions Online”.
The valid combinations of
gtid_mode
and auto-positioning on
master and slave are shown in the following table, where the
master's gtid_mode
is shown
on the horizontal and the slave's
gtid_mode
is on the vertical. The
meaning of each entry is as follows:
Table 17.1 Valid Combinations of Master and Slave gtid_mode
Master |
Master |
Master |
Master |
|
---|---|---|---|---|
Slave |
Y |
Y |
N |
N |
Slave |
Y |
Y |
Y |
Y* |
Slave |
Y |
Y |
Y |
Y* |
Slave |
N |
N |
Y |
Y* |
The currently selected gtid_mode
also impacts on the gtid_next
variable. The following table shows the behavior of the server for
the different values of gtid_mode
and gtid_next
. The meaning of
each entry is as follows:
ANONYMOUS
: generate an anonymous
transaction.
Error
: generate an error and fail to
execute SET GTID_NEXT
.
UUID:NUMBER
: generate a GTID with the
specified UUID:NUMBER.
New GTID
: generate a GTID with an
automatically generated number.
Table 17.2 Valid Combinations of gtid_mode and gtid_next
binary log on |
binary log off |
|
|
|
---|---|---|---|---|
|
ANONYMOUS |
ANONYMOUS |
ANONYMOUS | Error |
|
ANONYMOUS |
ANONYMOUS |
ANONYMOUS |
UUID:NUMBER |
|
New GTID |
ANONYMOUS |
ANONYMOUS |
UUID:NUMBER |
|
New GTID |
ANONYMOUS |
Error |
UUID:NUMBER |
When the binary log is off and
gtid_next
is set to
AUTOMATIC
, then no GTID is generated. This is
consistent with the behavior of previous versions.
This section describes how to enable GTID transactions, and optionally auto-positioning, on servers that are already online and using anonymous transactions. This procedure does not require taking the server offline and is suited to use in production. However, if you have the possibility to take the servers offline when enabling GTID transactions that process is easier.
Before you start, ensure that the servers meet the following pre-conditions:
All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions online on any single server unless all servers which are in the topology are using this version.
All servers have gtid_mode
set to the default value OFF
.
The following procedure can be paused at any time and later resumed where it was, or reversed by jumping to the corresponding step of Section 17.1.5.3, “Disabling GTID Transactions Online”, the online procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated issues that may appear in the middle of the procedure can be handled as usual, and then the procedure continued where it was left off.
It is crucial that you complete every step before continuing to the next step.
To enable GTID transactions:
On each server, execute:
SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = WARN;
Let the server run for a while with your normal workload and monitor the logs. If this step causes any warnings in the log, adjust your application so that it only uses GTID-compatible features and does not generate any warnings.
This is the first important step. You must ensure that no warnings are being generated in the error logs before going to the next step.
On each server, execute:
SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;
On each server, execute:
SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;
It does not matter which server executes this statement first, but it is important that all servers complete this step before any server begins the next step.
On each server, execute:
SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;
It does not matter which server executes this statement first.
On each server, wait until the status variable
ONGOING_ANONYMOUS_TRANSACTION_COUNT
is
zero. This can be checked using:
SHOW STATUS LIKE 'ONGOING_ANONYMOUS_TRANSACTION_COUNT';
On a replication slave, it is theoretically possible that this shows zero and then nonzero again. This is not a problem, it suffices that it shows zero once.
Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without stopping updates: the only important thing is that all anonymous transactions get replicated.
See Section 17.1.5.4, “Verifying Replication of Anonymous Transactions” for one method of checking that all anonymous transactions have replicated to all servers.
If you use binary logs for anything other than replication, for example point in time backup and restore, wait until you do not need the old binary logs having transactions without GTIDs.
For instance, after step 6 has completed, you can execute
FLUSH LOGS
on the server where
you are taking backups. Then either explicitly take a backup
or wait for the next iteration of any periodic backup routine
you may have set up.
Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also wait for any backup taken before step 6 to expire.
This is the second important point. It is vital to understand that binary logs containing anonymous transactions, without GTIDs cannot be used after the next step. After this step, you must be sure that transactions without GTIDs do not exist anywhere in the topology.
On each server, execute:
SET @@GLOBAL.GTID_MODE = ON;
On each server, add gtid_mode=ON
and
enforce_gtid_consistency=ON
to
my.cnf
.
You are now guaranteed that all transactions have a GTID
(except transactions generated in step 5 or earlier, which
have already been processed). To start using the GTID protocol
so that you can later perform automatic fail-over, execute the
following on each slave. Optionally, if you use multi-source
replication, do this for each channel and include the
FOR CHANNEL
clause:
channel
STOP SLAVE [FOR CHANNEL 'channel']; CHANGE MASTER TO MASTER_AUTO_POSITION = 1 [FOR CHANNEL 'channel']; START SLAVE [FOR CHANNEL 'channel'];
This section describes how to disable GTID transactions on servers that are already online. This procedure does not require taking the server offline and is suited to use in production. However, if you have the possibility to take the servers offline when disabling GTIDs mode that process is easier.
The process is similar to enabling GTID transactions while the server is online, but reversing the steps. The only thing that differs is the point at which you wait for logged transactions to replicate.
Before you start, ensure that the servers meet the following pre-conditions:
All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions online on any single server unless all servers which are in the topology are using this version.
All servers have gtid_mode
set to ON
.
The --replicate-same-server-id
option is not set on any server. You cannot disable GTID
transactions if this option is set together with the
--log-slave-updates
option
(which is the default) and binary logging is enabled (which is
also the default). Without GTIDs, this combination of options
causes infinite loops in circular replication.
Execute the following on each slave, and if you using
multi-source replication, do it for each channel and include
the FOR CHANNEL
channel clause:
STOP SLAVE [FOR CHANNEL 'channel']; CHANGE MASTER TO MASTER_AUTO_POSITION = 0, MASTER_LOG_FILE = file, \ MASTER_LOG_POS = position [FOR CHANNEL 'channel']; START SLAVE [FOR CHANNEL 'channel'];
On each server, execute:
SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;
On each server, execute:
SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;
On each server, wait until the variable @@GLOBAL.GTID_OWNED is equal to the empty string. This can be checked using:
SELECT @@GLOBAL.GTID_OWNED;
On a replication slave, it is theoretically possible that this is empty and then nonempty again. This is not a problem, it suffices that it is empty once.
Wait for all transactions that currently exist in any binary log to replicate to all slaves. See Section 17.1.5.4, “Verifying Replication of Anonymous Transactions” for one method of checking that all anonymous transactions have replicated to all servers.
If you use binary logs for anything else than replication, for example to do point in time backup or restore: wait until you do not need the old binary logs having GTID transactions.
For instance, after step 5 has completed, you can execute
FLUSH LOGS
on the server where
you are taking the backup. Then either explicitly take a
backup or wait for the next iteration of any periodic backup
routine you may have set up.
Ideally, wait for the server to purge all binary logs that existed when step 5 was completed. Also wait for any backup taken before step 5 to expire.
This is the one important point during this procedure. It is important to understand that logs containing GTID transactions cannot be used after the next step. Before proceeding you must be sure that GTID transactions do not exist anywhere in the topology.
On each server, execute:
SET @@GLOBAL.GTID_MODE = OFF;
On each server, set
gtid_mode=OFF
in
my.cnf
.
If you want to set
enforce_gtid_consistency=OFF
,
you can do so now. After setting it, you should add
enforce_gtid_consistency=OFF
to your configuration file.
If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal downgrade procedure.
This section explains how to monitor a replication topology and verify that all anonymous transactions have been replicated. This is helpful when changing the replication mode online as you can verify that it is safe to change to GTID transactions.
There are several possible ways to wait for transactions to replicate:
The simplest method, which works regardless of your topology but relies on timing is as follows: if you are sure that the slave never lags more than N seconds, just wait for a bit more than N seconds. Or wait for a day, or whatever time period you consider safe for your deployment.
A safer method in the sense that it does not depend on timing: if you only have a master with one or more slaves, do the following:
On the master, execute:
SHOW MASTER STATUS;
Note down the values in the File
and
Position
column.
On every slave, use the file and position information from the master to execute:
SELECT MASTER_POS_WAIT(file, position);
If you have a master and multiple levels of slaves, or in other words you have slaves of slaves, repeat step 2 on each level, starting from the master, then all the direct slaves, then all the slaves of slaves, and so on.
If you use a circular replication topology where multiple servers may have write clients, perform step 2 for each master-slave connection, until you have completed the full circle. Repeat the whole process so that you do the full circle twice.
For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C -> A. The procedure is then:
Do step 1 on A and step 2 on B.
Do step 1 on B and step 2 on C.
Do step 1 on C and step 2 on A.
Do step 1 on A and step 2 on B.
Do step 1 on B and step 2 on C.
Do step 1 on C and step 2 on A.
The following sections contain information about mysqld options and server variables that are used in replication and for controlling the binary log. Options and variables for use on replication masters and replication slaves are covered separately, as are options and variables relating to binary logging and global transaction identifiers (GTIDs). A set of quick-reference tables providing basic information about these options and variables is also included.
Of particular importance is the
server_id
system variable.
Property | Value |
---|---|
Command-Line Format | --server-id=# |
System Variable | server_id |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1 |
Minimum Value | 0 |
Maximum Value | 4294967295 |
This variable specifies the server ID.
server_id
is set to 1 by default.
The server can be started with this default ID, but when binary
logging is enabled, an informational message is issued if you did
not set server_id
explicitly to
specify a server ID.
For servers that are used in a replication topology, you must specify a unique server ID for each replication server, in the range from 1 to 232 − 1. “Unique” means that each ID must be different from every other ID in use by any other replication master or slave. For additional information, see Section 17.1.6.2, “Replication Master Options and Variables”, and Section 17.1.6.3, “Replication Slave Options and Variables”.
If the server ID is set to 0, binary logging takes place, but a master with a server ID of 0 refuses any connections from slaves, and a slave with a server ID of 0 refuses to connect to a master. Note that although you can change the server ID dynamically to a nonzero value, doing so does not enable replication to start immediately. You must change the server ID and then restart the server to initialize the replication slave.
For more information, see Section 17.1.2.2, “Setting the Replication Slave Configuration”.
The MySQL server generates a true UUID in addition to the default or
user-supplied server ID set in the server_id
system variable. This is available as the global, read-only variable
server_uuid
.
The presence of the server_uuid
system variable does not change the requirement for setting a
unique server_id
value for each
MySQL server as part of preparing and running MySQL replication,
as described earlier in this section.
Property | Value |
---|---|
System Variable | server_uuid |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
When starting, the MySQL server automatically obtains a UUID as follows:
The auto.cnf
file has a format similar to that
used for my.cnf
or my.ini
files. auto.cnf
has only a single
[auto]
section containing a single
server_uuid
setting and value; the
file's contents appear similar to what is shown here:
[auto] server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562
The auto.cnf
file is automatically generated;
do not attempt to write or modify this file.
When using MySQL replication, masters and slaves know each
other's UUIDs. The value of a slave's UUID can be seen in
the output of SHOW SLAVE HOSTS
. Once
START SLAVE
has been executed, the
value of the master's UUID is available on the slave in the
output of SHOW SLAVE STATUS
.
Issuing a STOP SLAVE
or
RESET SLAVE
statement does
not reset the master's UUID as used on
the slave.
A server's server_uuid
is also used in GTIDs
for transactions originating on that server. For more information,
see Section 17.1.3, “Replication with Global Transaction Identifiers”.
When starting, the slave I/O thread generates an error and aborts if
its master's UUID is equal to its own unless the
--replicate-same-server-id
option has
been set. In addition, the slave I/O thread generates a warning if
either of the following is true:
No master having the expected
server_uuid
exists.
The master's server_uuid
has changed, although no CHANGE MASTER
TO
statement has ever been executed.
The following two sections provide basic information about the MySQL command-line options and system variables applicable to replication and the binary log.
The command-line options and system variables in the following list relate to replication masters and replication slaves. Section 17.1.6.2, “Replication Master Options and Variables”, provides more detailed information about options and variables relating to replication master servers. For more information about options and variables relating to replication slaves, see Section 17.1.6.3, “Replication Slave Options and Variables”.
abort-slave-event-count
:
Option used by mysql-test for debugging and testing of
replication.
auto_increment_increment
:
AUTO_INCREMENT columns are incremented by this value.
auto_increment_offset
:
Offset added to AUTO_INCREMENT columns.
binlog_expire_logs_seconds
:
Purge binary logs after this many seconds.
binlog_gtid_simple_recovery
:
Controls how binary logs are iterated during GTID recovery.
Com_change_master
:
Count of CHANGE MASTER TO statements.
Com_show_master_status
:
Count of SHOW MASTER STATUS statements.
Com_show_slave_hosts
:
Count of SHOW SLAVE HOSTS statements.
Com_show_slave_status
:
Count of SHOW SLAVE STATUS statements.
Com_slave_start
:
Count of START SLAVE statements.
Com_slave_stop
:
Count of STOP SLAVE statements.
disconnect-slave-event-count
:
Option used by mysql-test for debugging and testing of
replication.
enforce_gtid_consistency
:
Prevents execution of statements that cannot be logged in a
transactionally safe manner.
expire_logs_days
:
Purge binary logs after this many days.
gtid_executed
:
Global: All GTIDs in the binary log (global) or current
transaction (session). Read-only.
gtid_executed_compression_period
:
Compress gtid_executed table each time this many transactions
have occurred. 0 means never compress this table. Applies only
when binary logging is disabled.
gtid_mode
:
Controls whether GTID based logging is enabled and what type of
transactions the logs can contain.
gtid_next
:
Specifies the GTID for the next statement to execute; see
documentation for details.
gtid_owned
:
The set of GTIDs owned by this client (session), or by all
clients, together with the thread ID of the owner (global).
Read-only.
gtid_purged
:
The set of all GTIDs that have been purged from the binary log.
init_slave
:
Statements that are executed when a slave connects to a master.
log_bin_trust_function_creators
:
If equal to 0 (the default), then when --log-bin is used,
creation of a stored function is allowed only to users having
the SUPER privilege and only if the function created does not
break binary logging.
log_statements_unsafe_for_binlog
:
Disables error 1592 warnings being written to the error log.
master-info-file
:
The location and name of the file that remembers the master and
where the I/O replication thread is in the master's binary logs.
master-retry-count
:
Number of tries the slave makes to connect to the master before
giving up.
master_info_repository
:
Whether to write master status information and replication I/O
thread location in the master's binary logs to a file or table.
max_relay_log_size
:
If nonzero, relay log is rotated automatically when its size
exceeds this value. If zero, size at which rotation occurs is
determined by the value of max_binlog_size.
original_commit_timestamp
:
The time when a transaction was committed on the original
master.
immediate_server_version
:
The MySQL Server release number of the server that is the
immediate master in a replication topology.
original_server_version
:
The MySQL Server release number of the server where a
transaction was originally committed.
relay_log
:
The location and base name to use for relay logs.
relay_log_basename
:
Complete path to relay log, including file name.
relay_log_index
:
The location and name to use for the file that keeps a list of
the last relay logs.
relay_log_info_file
:
File in which the slave records information about the relay
logs.
relay_log_info_repository
:
Whether to write the replication SQL thread's location in the
relay logs to a file or a table.
relay_log_purge
:
Determines whether relay logs are purged.
relay_log_recovery
:
Whether automatic recovery of relay log files from master at
startup is enabled; must be enabled for a crash-safe slave.
relay_log_space_limit
:
Maximum space to use for all relay logs.
replicate-do-db
:
Tells the slave SQL thread to restrict replication to the
specified database.
replicate-do-table
:
Tells the slave SQL thread to restrict replication to the
specified table.
replicate-ignore-db
:
Tells the slave SQL thread not to replicate to the specified
database.
replicate-ignore-table
:
Tells the slave SQL thread not to replicate to the specified
table.
replicate-rewrite-db
:
Updates to a database with a different name than the original.
replicate-same-server-id
:
In replication, if enabled, do not skip events having our server
id.
replicate-wild-do-table
:
Tells the slave thread to restrict replication to the tables
that match the specified wildcard pattern.
replicate-wild-ignore-table
:
Tells the slave thread not to replicate to the tables that match
the given wildcard pattern.
report_host
:
Host name or IP of the slave to be reported to the master during
slave registration.
report_password
:
An arbitrary password that the slave server should report to the
master. Not the same as the password for the MySQL replication
user account.
report_port
:
Port for connecting to slave reported to the master during slave
registration.
report_user
:
An arbitrary user name that a slave server should report to the
master. Not the same as the name used with the MySQL replication
user account.
Rpl_semi_sync_master_clients
:
Number of semisynchronous slaves.
rpl_semi_sync_master_enabled
:
Whether semisynchronous replication is enabled on the master.
Rpl_semi_sync_master_net_avg_wait_time
:
The average time the master waited for a slave reply.
Rpl_semi_sync_master_net_wait_time
:
The total time the master waited for slave replies.
Rpl_semi_sync_master_net_waits
:
The total number of times the master waited for slave replies.
Rpl_semi_sync_master_no_times
:
Number of times the master turned off semisynchronous
replication.
Rpl_semi_sync_master_no_tx
:
Number of commits not acknowledged successfully.
Rpl_semi_sync_master_status
:
Whether semisynchronous replication is operational on the
master.
Rpl_semi_sync_master_timefunc_failures
:
Number of times the master failed when calling time functions.
rpl_semi_sync_master_timeout
:
Number of milliseconds to wait for slave acknowledgment.
rpl_semi_sync_master_trace_level
:
The semisynchronous replication debug trace level on the master.
Rpl_semi_sync_master_tx_avg_wait_time
:
The average time the master waited for each transaction.
Rpl_semi_sync_master_tx_wait_time
:
The total time the master waited for transactions.
Rpl_semi_sync_master_tx_waits
:
The total number of times the master waited for transactions.
rpl_semi_sync_master_wait_for_slave_count
:
How many slave acknowledgments the master must receive per
transaction before proceeding.
rpl_semi_sync_master_wait_no_slave
:
Whether master waits for timeout even with no slaves.
rpl_semi_sync_master_wait_point
:
The wait point for slave transaction receipt acknowledgment.
Rpl_semi_sync_master_wait_pos_backtraverse
:
The total number of times the master waited for an event with
binary coordinates lower than events waited for previously.
Rpl_semi_sync_master_wait_sessions
:
Number of sessions currently waiting for slave replies.
Rpl_semi_sync_master_yes_tx
:
Number of commits acknowledged successfully.
rpl_semi_sync_slave_enabled
:
Whether semisynchronous replication is enabled on slave.
Rpl_semi_sync_slave_status
:
Whether semisynchronous replication is operational on slave.
rpl_semi_sync_slave_trace_level
:
The semisynchronous replication debug trace level on the slave.
rpl_read_size
:
Set the minimum amount of data in bytes that is read from the
binary log files and relay log files.
rpl_stop_slave_timeout
:
Set the number of seconds that STOP SLAVE waits before timing
out.
server_uuid
:
The server's globally unique ID, automatically (re)generated at
server start.
show-slave-auth-info
:
Show user name and password in SHOW SLAVE HOSTS on this master.
skip-slave-start
:
If set, slave is not autostarted.
slave_load_tmpdir
:
The location where the slave should put its temporary files when
replicating LOAD DATA statements.
slave_net_timeout
:
Number of seconds to wait for more data from a master/slave
connection before aborting the read.
slave-skip-errors
:
Tells the slave thread to continue replication when a query
returns an error from the provided list.
slave_checkpoint_group
:
Maximum number of transactions processed by a multithreaded
slave before a checkpoint operation is called to update progress
status. Not supported by NDB Cluster.
slave_checkpoint_period
:
Update progress status of multithreaded slave and flush relay
log info to disk after this number of milliseconds. Not
supported by NDB Cluster.
slave_compressed_protocol
:
Use compression of master/slave protocol.
slave_exec_mode
:
Allows for switching the slave thread between IDEMPOTENT mode
(key and some other errors suppressed) and STRICT mode; STRICT
mode is the default, except for NDB Cluster, where IDEMPOTENT is
always used.
slave_max_allowed_packet
:
Maximum size, in bytes, of a packet that can be sent from a
replication master to a slave; overrides max_allowed_packet.
Slave_open_temp_tables
:
Number of temporary tables that the slave SQL thread currently
has open.
slave_parallel_type
:
Tells the slave to use timestamp information (LOGICAL_CLOCK) or
database partioning (DATABASE) to parallelize transactions.
slave_parallel_workers
:
Number of applier threads for executing replication transactions
in parallel. A value of 0 disables slave multithreading. Not
supported by MySQL Cluster.
slave_pending_jobs_size_max
:
Maximum size of slave worker queues holding events not yet
applied.
slave_preserve_commit_order
:
Ensures that all commits by slave workers happen in the same
order as on the master to maintain consistency when using
parallel applier threads.
slave_rows_search_algorithms
:
Determines search algorithms used for slave update batching. Any
2 or 3 from the list INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.
Slave_rows_last_search_algorithm_used
:
Search algorithm most recently used by this slave to locate rows
for row-based replication (index, table, or hash scan).
slave_transaction_retries
:
Number of times the slave SQL thread will retry a transaction in
case it failed with a deadlock or elapsed lock wait timeout,
before giving up and stopping.
slave_type_conversions
:
Controls type conversion mode on replication slave. Value is a
list of zero or more elements from the list: ALL_LOSSY,
ALL_NON_LOSSY. Set to an empty string to disallow type
conversions between master and slave.
sql_log_bin
:
Controls binary logging for the current session.
sql_slave_skip_counter
:
Number of events from the master that a slave server should
skip. Not compatible with GTID replication.
sync_master_info
:
Synchronize master.info to disk after every #th event.
sync_relay_log
:
Synchronize relay log to disk after every #th event.
sync_relay_log_info
:
Synchronize relay.info file to disk after every #th event.
transaction_write_set_extraction
:
Defines the algorithm used to hash the writes extracted during a
transaction.
For a listing of all command-line options, system and status variables used with mysqld, see Section 5.1.4, “Server Option, System Variable, and Status Variable Reference”.
The command-line options and system variables in the following list relate to the binary log. Section 17.1.6.4, “Binary Logging Options and Variables”, provides more detailed information about options and variables relating to binary logging. For additional general information about the binary log, see Section 5.4.4, “The Binary Log”.
binlog-checksum
:
Enable/disable binary log checksums.
binlog-do-db
:
Limits binary logging to specific databases.
binlog_format
:
Specifies the format of the binary log.
binlog-ignore-db
:
Tells the master that updates to the given database should not
be logged to the binary log.
binlog-row-event-max-size
:
Binary log max event size.
binlog_encryption
:
Enable encryption for binary log files and relay log files on
this server.
binlog_rotate_encryption_master_key_at_startup
:
Rotate the binary log master key at server startup.
Binlog_cache_disk_use
:
Number of transactions that used a temporary file instead of the
binary log cache.
binlog_cache_size
:
Size of the cache to hold the SQL statements for the binary log
during a transaction.
Binlog_cache_use
:
Number of transactions that used the temporary binary log cache.
binlog_checksum
:
Enable/disable binary log checksums.
binlog_direct_non_transactional_updates
:
Causes updates using statement format to nontransactional
engines to be written directly to binary log. See documentation
before using.
binlog_error_action
:
Controls what happens when the server cannot write to the binary
log.
binlog_group_commit_sync_delay
:
Sets the number of microseconds to wait before synchronizing
transactions to disk.
binlog_group_commit_sync_no_delay_count
:
Sets the maximum number of transactions to wait for before
aborting the current delay specified by
binlog_group_commit_sync_delay.
binlog_max_flush_queue_time
:
How long to read transactions before flushing to binary log.
binlog_order_commits
:
Whether to commit in same order as writes to binary log.
binlog_row_image
:
Use full or minimal images when logging row changes.
binlog_row_metadata
:
Configures the amount of table related metadata binary logged
when using row-based logging.
binlog_row_value_options
:
Enables binary logging of partial JSON updates for row-based
replication.
binlog_rows_query_log_events
:
When enabled, enables logging of rows query log events when
using row-based logging. Disabled by default. Do not enable when
producing logs for pre-5.6 slaves/readers.
Binlog_stmt_cache_disk_use
:
Number of nontransactional statements that used a temporary file
instead of the binary log statement cache.
binlog_stmt_cache_size
:
Size of the cache to hold nontransactional statements for the
binary log during a transaction.
Binlog_stmt_cache_use
:
Number of statements that used the temporary binary log
statement cache.
binlog_transaction_compression
:
Enable compression for transaction payloads in binary log files.
binlog_transaction_compression_level_zstd
:
Compression level for transaction payloads in binary log files.
binlog_transaction_dependency_tracking
:
Source of dependency information (commit timestamps or
transaction write sets) from which to assess which transactions
can be executed in parallel by slave's multithreaded applier.
binlog_transaction_dependency_history_size
:
Number of row hashes kept for looking up transaction that last
updated some row.
Com_show_binlog_events
:
Count of SHOW BINLOG EVENTS statements.
Com_show_binlogs
:
Count of SHOW BINLOGS statements.
log-bin
:
Specifies the base name for binary log files.
log-bin-index
:
Specifies the name for the binary log index file.
log_bin
:
Whether the binary log is enabled.
log_bin_basename
:
Path and base name for binary log files.
log_bin_use_v1_row_events
:
Whether server is using version 1 binary log row events.
log_slave_updates
:
Whether the slave should log the updates performed by its SQL
thread to its own binary log.
master_verify_checksum
:
Cause master to examine checksums when reading from the binary
log.
max-binlog-dump-events
:
Option used by mysql-test for debugging and testing of
replication.
max_binlog_cache_size
:
Can be used to restrict the total size used to cache a
multi-statement transaction.
max_binlog_size
:
Binary log will be rotated automatically when size exceeds this
value.
max_binlog_stmt_cache_size
:
Can be used to restrict the total size used to cache all
nontransactional statements during a transaction.
slave-sql-verify-checksum
:
Cause slave to examine checksums when reading from the relay
log.
slave_sql_verify_checksum
:
Cause slave to examine checksums when reading from relay log.
sporadic-binlog-dump-fail
:
Option used by mysql-test for debugging and testing of
replication.
sync_binlog
:
Synchronously flush binary log to disk after every #th event.
For a listing of all command-line options, system and status variables used with mysqld, see Section 5.1.4, “Server Option, System Variable, and Status Variable Reference”.
This section describes the server options and system variables
that you can use on replication master servers. You can specify
the options either on the
command line or in an
option file. You can specify
system variable values using
SET
.
On the master and each slave, you must set the
server_id
system variable to
establish a unique replication ID. For each server, you should
pick a unique positive integer in the range from 1 to
232 − 1, and each ID must be
different from every other ID in use by any other replication
master or slave. Example: server-id=3
.
For options used on the master for controlling binary logging, see Section 17.1.6.4, “Binary Logging Options and Variables”.
The following list describes startup options for controlling replication master servers. Replication-related system variables are discussed later in this section.
Property | Value |
---|---|
Command-Line Format | --show-slave-auth-info[={OFF|ON}] |
Type | Boolean |
Default Value | OFF |
Display slave user names and passwords in the output of
SHOW SLAVE HOSTS
on the
master server for slaves started with the
--report-user
and
--report-password
options.
The following system variables are used for or by replication masters:
Property | Value |
---|---|
Command-Line Format | --auto-increment-increment=# |
System Variable | auto_increment_increment |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
Yes |
Type | Integer |
Default Value | 1 |
Minimum Value | 1 |
Maximum Value | 65535 |
auto_increment_increment
and auto_increment_offset
are intended for use with master-to-master replication, and
can be used to control the operation of
AUTO_INCREMENT
columns. Both variables
have global and session values, and each can assume an
integer value between 1 and 65,535 inclusive. Setting the
value of either of these two variables to 0 causes its value
to be set to 1 instead. Attempting to set the value of
either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535
instead. Attempting to set the value of
auto_increment_increment
or
auto_increment_offset
to a
noninteger value produces an error, and the actual value of
the variable remains unchanged.
auto_increment_increment
is also supported for use with
NDB
tables.
As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted operation.
When Group Replication is started on a server, the value of
auto_increment_increment
is
changed to the value of
group_replication_auto_increment_increment
,
which defaults to 7, and the value of
auto_increment_offset
is
changed to the server ID. The changes are reverted when
Group Replication is stopped. These changes are only made
and reverted if
auto_increment_increment
and auto_increment_offset
each have their default value of 1. If their values have
already been modified from the default, Group Replication
does not alter them. From MySQL 8.0, the system variables
are also not modified when Group Replication is in
single-primary mode, where only one server writes.
auto_increment_increment
and auto_increment_offset
affect AUTO_INCREMENT
column behavior as
follows:
auto_increment_increment
controls the interval between successive column values.
For example:
mysql>SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+ | Variable_name | Value | +--------------------------+-------+ | auto_increment_increment | 1 | | auto_increment_offset | 1 | +--------------------------+-------+ 2 rows in set (0.00 sec) mysql>CREATE TABLE autoinc1
->(col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.04 sec) mysql>SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec) mysql>SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+ | Variable_name | Value | +--------------------------+-------+ | auto_increment_increment | 10 | | auto_increment_offset | 1 | +--------------------------+-------+ 2 rows in set (0.01 sec) mysql>INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql>SELECT col FROM autoinc1;
+-----+ | col | +-----+ | 1 | | 11 | | 21 | | 31 | +-----+ 4 rows in set (0.00 sec)
auto_increment_offset
determines the starting point for the
AUTO_INCREMENT
column value. Consider
the following, assuming that these statements are
executed during the same session as the example given in
the description for
auto_increment_increment
:
mysql>SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec) mysql>SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+ | Variable_name | Value | +--------------------------+-------+ | auto_increment_increment | 10 | | auto_increment_offset | 5 | +--------------------------+-------+ 2 rows in set (0.00 sec) mysql>CREATE TABLE autoinc2
->(col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec) mysql>INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql>SELECT col FROM autoinc2;
+-----+ | col | +-----+ | 5 | | 15 | | 25 | | 35 | +-----+ 4 rows in set (0.02 sec)
When the value of
auto_increment_offset
is greater than that of
auto_increment_increment
,
the value of
auto_increment_offset
is ignored.
If either of these variables is changed, and then new rows
inserted into a table containing an
AUTO_INCREMENT
column, the results may
seem counterintuitive because the series of
AUTO_INCREMENT
values is calculated
without regard to any values already present in the column,
and the next value inserted is the least value in the series
that is greater than the maximum existing value in the
AUTO_INCREMENT
column. The series is
calculated like this:
auto_increment_offset
+
N
×
auto_increment_increment
where N
is a positive integer
value in the series [1, 2, 3, ...]. For example:
mysql>SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+ | Variable_name | Value | +--------------------------+-------+ | auto_increment_increment | 10 | | auto_increment_offset | 5 | +--------------------------+-------+ 2 rows in set (0.00 sec) mysql>SELECT col FROM autoinc1;
+-----+ | col | +-----+ | 1 | | 11 | | 21 | | 31 | +-----+ 4 rows in set (0.00 sec) mysql>INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql>SELECT col FROM autoinc1;
+-----+ | col | +-----+ | 1 | | 11 | | 21 | | 31 | | 35 | | 45 | | 55 | | 65 | +-----+ 8 rows in set (0.00 sec)
The values shown for
auto_increment_increment
and auto_increment_offset
generate the series 5 + N
×
10, that is, [5, 15, 25, 35, 45, ...]. The highest value
present in the col
column prior to the
INSERT
is 31, and the next
available value in the AUTO_INCREMENT
series is 35, so the inserted values for
col
begin at that point and the results
are as shown for the SELECT
query.
It is not possible to restrict the effects of these two
variables to a single table; these variables control the
behavior of all AUTO_INCREMENT
columns in
all tables on the MySQL server. If the
global value of either variable is set, its effects persist
until the global value is changed or overridden by setting
the session value, or until mysqld is
restarted. If the local value is set, the new value affects
AUTO_INCREMENT
columns for all tables
into which new rows are inserted by the current user for the
duration of the session, unless the values are changed
during that session.
The default value of
auto_increment_increment
is
1. See
Section 17.5.1.1, “Replication and AUTO_INCREMENT”.
Property | Value |
---|---|
Command-Line Format | --auto-increment-offset=# |
System Variable | auto_increment_offset |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
Yes |
Type | Integer |
Default Value | 1 |
Minimum Value | 1 |
Maximum Value | 65535 |
This variable has a default value of 1. If it is left with
its default value, and Group Replication is started on the
server in multi-primary mode, it is changed to the server
ID. For more information, see the description for
auto_increment_increment
.
auto_increment_offset
is also supported
for use with NDB
tables.
As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted operation.
Property | Value |
---|---|
Introduced | 8.0.14 |
System Variable | immediate_server_version |
Scope | Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
For internal use by replication. This session system
variable holds the MySQL Server release number of the server
that is the immediate master in a replication topology (for
example, 80014
for a MySQL 8.0.14 server
instance). If this immediate server is at a release that
does not support the session system variable, the value of
the variable is set to 0
(UNKNOWN_SERVER_VERSION
).
The value of the variable is replicated from a master to a
slave. With this information the slave can correctly process
data originating from a master at an older release, by
recognizing where syntax changes or semantic changes have
occurred between the releases involved and handling these
appropriately. The information can also be used in a Group
Replication environment where one or more members of the
replication group is at a newer release than the others. The
value of the variable can be viewed in the binary log for
each transaction (as part of the
Gtid_log_event
, or
Anonymous_gtid_log_event
if GTIDs are not
in use on the server), and could be helpful in debugging
cross-version replication issues.
Setting the session value of this system variable is a
restricted operation. The session user must have either the
REPLICATION_APPLIER
privilege
(see Section 17.3.3, “Replication Privilege Checks”), or
privileges sufficient to set restricted session variables
(see Section 5.1.9.1, “System Variable Privileges”). However,
note that the variable is not intended for users to set; it
is set automatically by the replication infrastructure.
Property | Value |
---|---|
Introduced | 8.0.14 |
System Variable | original_server_version |
Scope | Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
For internal use by replication. This session system
variable holds the MySQL Server release number of the server
where a transaction was originally committed (for example,
80014
for a MySQL 8.0.14 server
instance). If this original server is at a release that does
not support the session system variable, the value of the
variable is set to 0
(UNKNOWN_SERVER_VERSION
). Note that when
a release number is set by the original server, the value of
the variable is reset to 0 if the immediate server or any
other intervening server in the replication topology does
not support the session system variable, and so does not
replicate its value.
The value of the variable is set and used in the same ways
as for the
immediate_server_version
system variable. If the value of the variable is the same as
that for the
immediate_server_version
system variable, only the latter is recorded in the binary
log, with an indicator that the original server version is
the same.
In a Group Replication environment, view change log events, which are special transactions queued by each group member when a new member joins the group, are tagged with the server version of the group member queuing the transaction. This ensures that the server version of the original donor is known to the joining member. Because the view change log events queued for a particular view change have the same GTID on all members, for this case only, instances of the same GTID might have a different original server version.
Setting the session value of this system variable is a
restricted operation. The session user must have either the
REPLICATION_APPLIER
privilege
(see Section 17.3.3, “Replication Privilege Checks”), or
privileges sufficient to set restricted session variables
(see Section 5.1.9.1, “System Variable Privileges”). However,
note that the variable is not intended for users to set; it
is set automatically by the replication infrastructure.
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-enabled[={OFF|ON}] |
System Variable | rpl_semi_sync_master_enabled |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Controls whether semisynchronous replication is enabled on
the master. To enable or disable the plugin, set this
variable to ON
or OFF
(or 1 or 0), respectively. The default is
OFF
.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-timeout=# |
System Variable | rpl_semi_sync_master_timeout |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 10000 |
A value in milliseconds that controls how long the master waits on a commit for acknowledgment from a slave before timing out and reverting to asynchronous replication. The default value is 10000 (10 seconds).
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_trace_level
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-trace-level=# |
System Variable | rpl_semi_sync_master_trace_level |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 32 |
The semisynchronous replication debug trace level on the master. Four levels are defined:
1 = general level (for example, time function failures)
16 = detail level (more verbose information)
32 = net wait level (more information about network waits)
64 = function level (information about function entry and exit)
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_wait_for_slave_count
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-wait-for-slave-count=# |
System Variable | rpl_semi_sync_master_wait_for_slave_count |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1 |
Minimum Value | 1 |
Maximum Value | 65535 |
The number of slave acknowledgments the master must receive
per transaction before proceeding. By default
rpl_semi_sync_master_wait_for_slave_count
is 1
, meaning that semisynchronous
replication proceeds after receiving a single slave
acknowledgment. Performance is best for small values of this
variable.
For example, if
rpl_semi_sync_master_wait_for_slave_count
is 2
, then 2 slaves must acknowledge
receipt of the transaction before the timeout period
configured by
rpl_semi_sync_master_timeout
for semisynchronous replication to proceed. If less slaves
acknowledge receipt of the transaction during the timeout
period, the master reverts to normal replication.
This behavior also depends on
rpl_semi_sync_master_wait_no_slave
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_wait_no_slave
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-wait-no-slave[={OFF|ON}] |
System Variable | rpl_semi_sync_master_wait_no_slave |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
Controls whether the master waits for the timeout period
configured by
rpl_semi_sync_master_timeout
to expire, even if the slave count drops to less than the
number of slaves configured by
rpl_semi_sync_master_wait_for_slave_count
during the timeout period.
When the value of
rpl_semi_sync_master_wait_no_slave
is
ON
(the default), it is permissible for
the slave count to drop to less than
rpl_semi_sync_master_wait_for_slave_count
during the timeout period. As long as enough slaves
acknowledge the transaction before the timeout period
expires, semisynchronous replication continues.
When the value of
rpl_semi_sync_master_wait_no_slave
is
OFF
, if the slave count drops to less
than the number configured in
rpl_semi_sync_master_wait_for_slave_count
at any time during the timeout period configured by
rpl_semi_sync_master_timeout
,
the master reverts to normal replication.
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_wait_point
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-master-wait-point=value |
System Variable | rpl_semi_sync_master_wait_point |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | AFTER_SYNC |
Valid Values |
|
This variable controls the point at which a semisynchronous replication master waits for slave acknowledgment of transaction receipt before returning a status to the client that committed the transaction. These values are permitted:
AFTER_SYNC
(the default): The master
writes each transaction to its binary log and the slave,
and syncs the binary log to disk. The master waits for
slave acknowledgment of transaction receipt after the
sync. Upon receiving acknowledgment, the master commits
the transaction to the storage engine and returns a
result to the client, which then can proceed.
AFTER_COMMIT
: The master writes each
transaction to its binary log and the slave, syncs the
binary log, and commits the transaction to the storage
engine. The master waits for slave acknowledgment of
transaction receipt after the commit. Upon receiving
acknowledgment, the master returns a result to the
client, which then can proceed.
The replication characteristics of these settings differ as follows:
With AFTER_SYNC
, all clients see the
committed transaction at the same time: After it has
been acknowledged by the slave and committed to the
storage engine on the master. Thus, all clients see the
same data on the master.
In the event of master failure, all transactions committed on the master have been replicated to the slave (saved to its relay log). A crash of the master and failover to the slave is lossless because the slave is up to date. Note, however, that the master cannot be restarted in this scenario and must be discarded, because its binary log might contain uncommitted transactions that would cause a conflict with the slave when externalized after binary log recovery.
With AFTER_COMMIT
, the client issuing
the transaction gets a return status only after the
server commits to the storage engine and receives slave
acknowledgment. After the commit and before slave
acknowledgment, other clients can see the committed
transaction before the committing client.
If something goes wrong such that the slave does not process the transaction, then in the event of a master crash and failover to the slave, it is possible that such clients will see a loss of data relative to what they saw on the master.
This variable is available only if the master-side semisynchronous replication plugin is installed.
With the addition of
rpl_semi_sync_master_wait_point
in MySQL 5.7, a version compatibility constraint was created
because it increments the semisynchronous interface version:
Servers for MySQL 5.7 and higher do not work with
semisynchronous replication plugins from older versions, nor
do servers from older versions work with semisynchronous
replication plugins for MySQL 5.7 and higher.
This section explains the server options and system variables that apply to slave replication servers and contains the following:
Specify the options either on the
command line or in an
option file. Many of the
options can be set while the server is running by using the
CHANGE MASTER TO
statement. Specify
system variable values using
SET
.
Server ID.
On the master and each slave, you must set the
server_id
system variable to
establish a unique replication ID in the range from 1 to
232 − 1. “Unique”
means that each ID must be different from every other ID in use
by any other replication master or slave. Example
my.cnf
file:
[mysqld] server-id=3
This section explains startup options for controlling
replication slave servers. Many of these options can be set
while the server is running by using the
CHANGE MASTER TO
statement.
Others, such as the --replicate-*
options, can
be set only when the slave server starts. Replication-related
system variables are discussed later in this section.
Property | Value |
---|---|
Command-Line Format | --master-info-file=file_name |
Deprecated | 8.0.18 |
Type | File name |
Default Value | master.info |
The name for the master info log, if
master_info_repository=FILE
is set. The default name is master.info
in the data directory.
--master-info-file
and the
setting
master_info_repository=FILE
are deprecated because the use of a file for the master info
log has been superseded by crash-safe slave tables. For
information about the master info log, see
Section 17.2.4.2, “Slave Status Logs”.
Property | Value |
---|---|
Command-Line Format | --master-retry-count=# |
Deprecated | Yes |
Type | Integer |
Default Value | 86400 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The number of times that the slave tries to reconnect to the
master before giving up. The default value is 86400 times. A
value of 0 means “infinite”, and the slave
attempts to connect forever. Reconnection attempts are
triggered when the slave reaches its connection timeout
(specified by the
slave_net_timeout
system
variable) without receiving data or a heartbeat signal from
the master. Reconnection is attempted at intervals set by
the MASTER_CONNECT_RETRY
option of the
CHANGE MASTER TO
statement
(which defaults to every 60 seconds).
This option is deprecated and will be removed in a future
MySQL release. Use the MASTER_RETRY_COUNT
option of the CHANGE MASTER
TO
statement instead.
Property | Value |
---|---|
Command-Line Format | --max-relay-log-size=# |
System Variable | max_relay_log_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 1073741824 |
The size at which the server rotates relay log files
automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If
this value is zero (the default), the size at which relay
log rotation occurs is determined by the value of
max_binlog_size
. For more
information, see Section 17.2.4.1, “The Slave Relay Log”.
Property | Value |
---|---|
Command-Line Format | --relay-log-purge[={OFF|ON}] |
System Variable | relay_log_purge |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
Disable or enable automatic purging of relay logs as soon as
they are no longer needed. The default value is 1 (enabled).
This is a global variable that can be changed dynamically
with SET GLOBAL relay_log_purge =
. Disabling purging of
relay logs when enabling the
N
--relay-log-recovery
option
risks data consistency and is therefore not crash-safe.
Property | Value |
---|---|
Command-Line Format | --relay-log-space-limit=# |
System Variable | relay_log_space_limit |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
This option places an upper limit on the total size in bytes
of all relay logs on the slave. A value of 0 means “no
limit”. This is useful for a slave server host that
has limited disk space. When the limit is reached, the I/O
thread stops reading binary log events from the master
server until the SQL thread has caught up and deleted some
unused relay logs. Note that this limit is not absolute:
There are cases where the SQL thread needs more events
before it can delete relay logs. In that case, the I/O
thread exceeds the limit until it becomes possible for the
SQL thread to delete some relay logs because not doing so
would cause a deadlock. You should not set
--relay-log-space-limit
to
less than twice the value of
--max-relay-log-size
(or
--max-binlog-size
if
--max-relay-log-size
is 0).
In that case, there is a chance that the I/O thread waits
for free space because
--relay-log-space-limit
is
exceeded, but the SQL thread has no relay log to purge and
is unable to satisfy the I/O thread. This forces the I/O
thread to ignore
--relay-log-space-limit
temporarily.
Property | Value |
---|---|
Command-Line Format | --replicate-do-db=name |
Type | String |
Creates a replication filter using the name of a database.
Such filters can also be created using
CHANGE
REPLICATION FILTER REPLICATE_DO_DB
.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-do-db:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
The precise effect of this replication filter depends on whether statement-based or row-based replication is in use.
Statement-based replication.
Tell the slave SQL thread to restrict replication to
statements where the default database (that is, the one
selected by USE
) is
db_name
. To specify more than
one database, use this option multiple times, once for
each database; however, doing so does
not replicate cross-database
statements such as UPDATE
while a different database (or no
database) is selected.
some_db.some_table
SET
foo='bar'
To specify multiple databases you must use multiple instances of this option. Because database names can contain commas, if you supply a comma separated list then the list is treated as the name of a single database.
An example of what does not work as you might expect when
using statement-based replication: If the slave is started
with --replicate-do-db=sales
and you issue the following statements on the master, the
UPDATE
statement is
not replicated:
USE prices; UPDATE sales.january SET amount=amount+1000;
The main reason for this “check just the default
database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for
example, if you are using multiple-table
DELETE
statements or
multiple-table UPDATE
statements that act across multiple databases). It is also
faster to check only the default database rather than all
databases if there is no need.
Row-based replication.
Tells the slave SQL thread to restrict replication to
database db_name
. Only tables
belonging to db_name
are
changed; the current database has no effect on this.
Suppose that the slave is started with
--replicate-do-db=sales
and
row-based replication is in effect, and then the following
statements are run on the master:
USE prices; UPDATE sales.february SET amount=amount+100;
The february
table in the
sales
database on the slave is changed in
accordance with the UPDATE
statement; this occurs whether or not the
USE
statement was issued.
However, issuing the following statements on the master has
no effect on the slave when using row-based replication and
--replicate-do-db=sales
:
USE prices; UPDATE prices.march SET amount=amount-25;
Even if the statement USE prices
were
changed to USE sales
, the
UPDATE
statement's
effects would still not be replicated.
Another important difference in how
--replicate-do-db
is handled
in statement-based replication as opposed to row-based
replication occurs with regard to statements that refer to
multiple databases. Suppose that the slave is started with
--replicate-do-db=db1
, and
the following statements are executed on the master:
USE db1; UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
If you are using statement-based replication, then both
tables are updated on the slave. However, when using
row-based replication, only table1
is
affected on the slave; since table2
is in
a different database, table2
on the slave
is not changed by the UPDATE
.
Now suppose that, instead of the USE db1
statement, a USE db4
statement had been
used:
USE db4; UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
In this case, the UPDATE
statement would have no effect on the slave when using
statement-based replication. However, if you are using
row-based replication, the
UPDATE
would change
table1
on the slave, but not
table2
—in other words, only tables
in the database named by
--replicate-do-db
are
changed, and the choice of default database has no effect on
this behavior.
If you need cross-database updates to work, use
--replicate-wild-do-table=
instead. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.
db_name
.%
This option affects replication in the same manner that
--binlog-do-db
affects
binary logging, and the effects of the replication format
on how --replicate-do-db
affects replication behavior are the same as those of the
logging format on the behavior of
--binlog-do-db
.
This option has no effect on
BEGIN
,
COMMIT
, or
ROLLBACK
statements.
Property | Value |
---|---|
Command-Line Format | --replicate-ignore-db=name |
Type | String |
Creates a replication filter using the name of a database.
Such filters can also be created using
CHANGE
REPLICATION FILTER REPLICATE_IGNORE_DB
.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-ignore-db:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
To specify more than one database to ignore, use this option multiple times, once for each database. Because database names can contain commas, if you supply a comma separated list then the list will be treated as the name of a single database.
As with --replicate-do-db
,
the precise effect of this filtering depends on whether
statement-based or row-based replication is in use, and are
described in the next several paragraphs.
Statement-based replication.
Tells the slave SQL thread not to replicate any statement
where the default database (that is, the one selected by
USE
) is
db_name
.
Row-based replication.
Tells the slave SQL thread not to update any tables in the
database db_name
. The default
database has no effect.
When using statement-based replication, the following
example does not work as you might expect. Suppose that the
slave is started with
--replicate-ignore-db=sales
and you issue the following statements on the master:
USE prices; UPDATE sales.january SET amount=amount+1000;
The UPDATE
statement
is replicated in such a case because
--replicate-ignore-db
applies
only to the default database (determined by the
USE
statement). Because the
sales
database was specified explicitly
in the statement, the statement has not been filtered.
However, when using row-based replication, the
UPDATE
statement's
effects are not propagated to the
slave, and the slave's copy of the
sales.january
table is unchanged; in this
instance,
--replicate-ignore-db=sales
causes all changes made to tables in
the master's copy of the sales
database to be ignored by the slave.
You should not use this option if you are using cross-database updates and you do not want these updates to be replicated. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.
If you need cross-database updates to work, use
--replicate-wild-ignore-table=
instead. See Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.
db_name
.%
This option affects replication in the same manner that
--binlog-ignore-db
affects
binary logging, and the effects of the replication format
on how
--replicate-ignore-db
affects replication behavior are the same as those of the
logging format on the behavior of
--binlog-ignore-db
.
This option has no effect on
BEGIN
,
COMMIT
, or
ROLLBACK
statements.
--replicate-do-table=
db_name.tbl_name
Property | Value |
---|---|
Command-Line Format | --replicate-do-table=name |
Type | String |
Creates a replication filter by telling the slave SQL thread
to restrict replication to a given table. To specify more
than one table, use this option multiple times, once for
each table. This works for both cross-database updates and
default database updates, in contrast to
--replicate-do-db
. See
Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create
such a filter by issuing a
CHANGE
REPLICATION FILTER REPLICATE_DO_TABLE
statement.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-do-table:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name.tbl_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
This option affects only statements that apply to tables. It
does not affect statements that apply only to other database
objects, such as stored routines. To filter statements
operating on stored routines, use one or more of the
--replicate-*-db
options.
--replicate-ignore-table=
db_name.tbl_name
Property | Value |
---|---|
Command-Line Format | --replicate-ignore-table=name |
Type | String |
Creates a replication filter by telling the slave SQL thread
not to replicate any statement that updates the specified
table, even if any other tables might be updated by the same
statement. To specify more than one table to ignore, use
this option multiple times, once for each table. This works
for cross-database updates, in contrast to
--replicate-ignore-db
. See
Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create
such a filter by issuing a
CHANGE
REPLICATION FILTER REPLICATE_IGNORE_TABLE
statement.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-ignore-table:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name.tbl_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
This option affects only statements that apply to tables. It
does not affect statements that apply only to other database
objects, such as stored routines. To filter statements
operating on stored routines, use one or more of the
--replicate-*-db
options.
--replicate-rewrite-db=
from_name
->to_name
Property | Value |
---|---|
Command-Line Format | --replicate-rewrite-db=old_name->new_name |
Type | String |
Tells the slave to create a replication filter that
translates the specified database to
to_name
if it was
from_name
on the master. Only
statements involving tables are affected, not statements
such as CREATE DATABASE
,
DROP DATABASE
, and
ALTER DATABASE
.
To specify multiple rewrites, use this option multiple
times. The server uses the first one with a
from_name
value that matches. The
database name translation is done
before the
--replicate-*
rules are tested. You can
also create such a filter by issuing a
CHANGE
REPLICATION FILTER REPLICATE_REWRITE_DB
statement.
If you use the
--replicate-rewrite-db
option
on the command line and the >
character is special to your command interpreter, quote the
option value. For example:
shell> mysqld --replicate-rewrite-db="olddb
->newdb
"
The effect of the
--replicate-rewrite-db
option
differs depending on whether statement-based or row-based
binary logging format is used for the query. With
statement-based format, DML statements are translated based
on the current database, as specified by the
USE
statement. With row-based
format, DML statements are translated based on the database
where the modified table exists. DDL statements are always
filtered based on the current database, as specified by the
USE
statement, regardless of
the binary logging format.
To ensure that rewriting produces the expected results,
particularly in combination with other replication filtering
options, follow these recommendations when you use the
--replicate-rewrite-db
option:
Create the from_name
and
to_name
databases manually on
the master and the slave with different names.
If you use statement-based or mixed binary logging
format, do not use cross-database queries, and do not
specify database names in queries. For both DDL and DML
statements, rely on the
USE
statement to specify
the current database, and use only the table name in
queries.
If you use row-based binary logging format exclusively,
for DDL statements, rely on the
USE
statement to specify
the current database, and use only the table name in
queries. For DML statements, you can use a fully
qualified table name
(db
.table
)
if you want.
If these recommendations are followed, it is safe to use the
--replicate-rewrite-db
option
in combination with table-level replication filtering
options such as
--replicate-do-table
.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. Specify the channel name
followed by a colon, followed by the filter specification.
The first colon is interpreted as a separator, and any
subsequent colons are interpreted as literal colons. For
example, to configure a channel specific replication filter
on a channel named channel_1
,
use:
shell> mysqld --replicate-rewrite-db=channel_1
:db_name1
->db_name2
If you use a colon but do not specify a channel name, the option configures the replication filter for the default replication channel. See Section 17.2.5.4, “Replication Channel Based Filters” for more information.
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
Property | Value |
---|---|
Command-Line Format | --replicate-same-server-id[={OFF|ON}] |
Type | Boolean |
Default Value | OFF |
This option is for use on replication slaves. The default is
0 (FALSE
). With this option set to 1
(TRUE
), the slave does not skip events
that have its own server ID. This setting is normally useful
only in rare configurations.
When binary logging is enabled on a replication slave, the
combination of the
--replicate-same-server-id
and --log-slave-updates
options on the slave can cause infinite loops in replication
if the server is part of a circular replication topology.
(In MySQL 8.0, binary logging is enabled by default, and
slave update logging is the default when binary logging is
enabled.) However, the use of global transaction identifiers
(GTIDs) prevents this situation by skipping the execution of
transactions that have already been applied. If
gtid_mode=ON
is set on the
slave, you can start the server with this combination of
options, but you cannot change to any other GTID mode while
the server is running. If any other GTID mode is set, the
server does not start with this combination of options.
By default, the slave I/O thread does not write binary log
events to the relay log if they have the slave's server ID
(this optimization helps save disk usage). If you want to
use
--replicate-same-server-id
,
be sure to start the slave with this option before you make
the slave read its own events that you want the slave SQL
thread to execute.
--replicate-wild-do-table=
db_name.tbl_name
Property | Value |
---|---|
Command-Line Format | --replicate-wild-do-table=name |
Type | String |
Creates a replication filter by telling the slave thread to
restrict replication to statements where any of the updated
tables match the specified database and table name patterns.
Patterns can contain the %
and
_
wildcard characters, which have the
same meaning as for the LIKE
pattern-matching operator. To specify more than one table,
use this option multiple times, once for each table. This
works for cross-database updates. See
Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create
such a filter by issuing a
CHANGE
REPLICATION FILTER REPLICATE_WILD_DO_TABLE
statement.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-wild-do-table:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name.tbl_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
This option applies to tables, views, and triggers. It does
not apply to stored procedures and functions, or events. To
filter statements operating on the latter objects, use one
or more of the --replicate-*-db
options.
As an example,
--replicate-wild-do-table=foo%.bar%
replicates only updates that use a table where the database
name starts with foo
and the table name
starts with bar
.
If the table name pattern is %
, it
matches any table name and the option also applies to
database-level statements (CREATE
DATABASE
, DROP
DATABASE
, and ALTER
DATABASE
). For example, if you use
--replicate-wild-do-table=foo%.%
,
database-level statements are replicated if the database
name matches the pattern foo%
.
To include literal wildcard characters in the database or
table name patterns, escape them with a backslash. For
example, to replicate all tables of a database that is named
my_own%db
, but not replicate tables from
the my1ownAABCdb
database, you should
escape the _
and %
characters like this:
--replicate-wild-do-table=my\_own\%db
.
If you use the option on the command line, you might need to
double the backslashes or quote the option value, depending
on your command interpreter. For example, with the
bash shell, you would need to type
--replicate-wild-do-table=my\\_own\\%db
.
--replicate-wild-ignore-table=
db_name.tbl_name
Property | Value |
---|---|
Command-Line Format | --replicate-wild-ignore-table=name |
Type | String |
Creates a replication filter which keeps the slave thread
from replicating a statement in which any table matches the
given wildcard pattern. To specify more than one table to
ignore, use this option multiple times, once for each table.
This works for cross-database updates. See
Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”. You can also create
such a filter by issuing a
CHANGE
REPLICATION FILTER REPLICATE_WILD_IGNORE_TABLE
statement.
This option supports channel specific replication filters,
enabling multi-source replication slaves to use specific
filters for different sources. To configure a channel
specific replication filter on a channel named
channel_1
use
--replicate-wild-ignore:
.
In this case, the first colon is interpreted as a separator
and subsequent colons are literal colons. See
Section 17.2.5.4, “Replication Channel Based Filters”
for more information.
channel_1
:db_name.tbl_name
Global replication filters cannot be used on a MySQL
server instance that is configured for Group
Replication, because filtering transactions on some
servers would make the group unable to reach agreement
on a consistent state. Channel specific replication
filters can be used on replication channels that are not
directly involved with Group Replication, such as where
a group member also acts as a replication slave to a
master that is outside the group. They cannot be used on
the group_replication_applier
or
group_replication_recovery
channels.
As an example,
--replicate-wild-ignore-table=foo%.bar%
does not replicate updates that use a table where the
database name starts with foo
and the
table name starts with bar
. For
information about how matching works, see the description of
the --replicate-wild-do-table
option. The rules for including literal wildcard characters
in the option value are the same as for
--replicate-wild-ignore-table
as well.
Property | Value |
---|---|
Command-Line Format | --skip-slave-start[={OFF|ON}] |
Type | Boolean |
Default Value | OFF |
Tells the slave server not to start the slave threads when
the server starts. To start the threads later, use a
START SLAVE
statement.
--slave-skip-errors=[
err_code1
,err_code2
,...|all|ddl_exist_errors]
Property | Value |
---|---|
Command-Line Format | --slave-skip-errors=name |
System Variable | slave_skip_errors |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
Default Value | OFF |
Valid Values |
|
Normally, replication stops when an error occurs on the slave, which gives you the opportunity to resolve the inconsistency in the data manually. This option causes the slave SQL thread to continue replication when a statement returns any of the errors listed in the option value.
Do not use this option unless you fully understand why you are getting errors. If there are no bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication should never occur. Indiscriminate use of this option results in slaves becoming hopelessly out of synchrony with the master, with you having no idea why this has occurred.
For error codes, you should use the numbers provided by the
error message in your slave error log and in the output of
SHOW SLAVE STATUS
.
Appendix B, Errors, Error Codes, and Common Problems, lists server error codes.
The shorthand value ddl_exist_errors
is
equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1094,1146
.
You can also (but should not) use the very nonrecommended
value of all
to cause the slave to ignore
all error messages and keeps going regardless of what
happens. Needless to say, if you use all
,
there are no guarantees regarding the integrity of your
data. Please do not complain (or file bug reports) in this
case if the slave's data is not anywhere close to what it is
on the master. You have been warned.
Examples:
--slave-skip-errors=1062,1053 --slave-skip-errors=all --slave-skip-errors=ddl_exist_errors
--slave-sql-verify-checksum={0|1}
Property | Value |
---|---|
Command-Line Format | --slave-sql-verify-checksum[={OFF|ON}] |
Type | Boolean |
Default Value | ON |
When this option is enabled, the slave examines checksums read from the relay log, in the event of a mismatch, the slave stops with an error.
The following options are used internally by the MySQL test suite for replication testing and debugging. They are not intended for use in a production setting.
Property | Value |
---|---|
Command-Line Format | --abort-slave-event-count=# |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
When this option is set to some positive integer
value
other than 0 (the default)
it affects replication behavior as follows: After the slave
SQL thread has started, value
log
events are permitted to be executed; after that, the slave
SQL thread does not receive any more events, just as if the
network connection from the master were cut. The slave
thread continues to run, and the output from
SHOW SLAVE STATUS
displays
Yes
in both the
Slave_IO_Running
and the
Slave_SQL_Running
columns, but no further
events are read from the relay log.
--disconnect-slave-event-count
Property | Value |
---|---|
Command-Line Format | --disconnect-slave-event-count=# |
Type | Integer |
Default Value | 0 |
Replication slave status information is logged to an InnoDB
table in the mysql
database. Before MySQL
8.0, this information could alternatively be logged to a file in
the data directory, but the use of that format is now
deprecated. Writing of the master info log and the relay log
info log can be configured separately using these two system
variables:
For information about these variables, see Section 17.1.6.3, “Replication Slave Options and Variables”.
The slave status log tables and their contents are considered local to a given MySQL Server. They are not replicated, and changes to them are not written to the binary log.
For more information, see Section 17.2.4, “Replication Relay and Status Logs”.
The following list describes system variables for controlling
replication slave servers. They can be set at server startup and
some of them can be changed at runtime using
SET
.
Server options used with replication slaves are listed earlier
in this section.
Property | Value |
---|---|
Command-Line Format | --init-slave=name |
System Variable | init_slave |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | String |
This variable is similar to
init_connect
, but is a
string to be executed by a slave server each time the SQL
thread starts. The format of the string is the same as for
the init_connect
variable.
The setting of this variable takes effect for subsequent
START SLAVE
statements.
The SQL thread sends an acknowledgment to the client
before it executes
init_slave
. Therefore, it
is not guaranteed that
init_slave
has been
executed when START SLAVE
returns. See Section 13.4.2.5, “START SLAVE Statement”, for more
information.
Property | Value |
---|---|
Command-Line Format | --log-slow-slave-statements[={OFF|ON}] |
System Variable | log_slow_slave_statements |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
When the slow query log is enabled, this variable enables
logging for queries that have taken more than
long_query_time
seconds to
execute on the slave. Note that if row-based replication is
in use (binlog_format=ROW
),
log_slow_slave_statements
has no effect. Queries are only added to the slave's slow
query log when they are logged in statement format in the
binary log, that is, when
binlog_format=STATEMENT
is
set, or when
binlog_format=MIXED
is set
and the statement is logged in statement format. Slow
queries that are logged in row format when
binlog_format=MIXED
is set,
or that are logged when
binlog_format=ROW
is set,
are not added to the slave's slow query log, even if
log_slow_slave_statements
is enabled.
Setting
log_slow_slave_statements
has no immediate effect. The state of the variable applies
on all subsequent START SLAVE
statements. Also note that the global setting for
long_query_time
applies for
the lifetime of the SQL thread. If you change that setting,
you must stop and restart the slave's SQL thread to
implement the change there (for example, by issuing
STOP SLAVE
and
START SLAVE
statements with
the SQL_THREAD
option).
Property | Value |
---|---|
Command-Line Format | --master-info-repository={FILE|TABLE} |
System Variable | master_info_repository |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | String |
Default Value | TABLE |
Valid Values |
|
The setting of this variable determines whether the slave
server logs master status and connection information to an
InnoDB
table in the
mysql
system database, or to a file in
the data directory.
The default setting is TABLE
. As an
InnoDB
table, the master info log is
named mysql.slave_master_info
. The
TABLE
setting is required when multiple
replication channels are configured.
The FILE
setting is deprecated, and will
be removed in a future release. As a file, the master info
log is named master.info
by default.
You can change this name using the
--master-info-file
option.
The setting for the location of this slave status log has a
direct influence on the effect had by the setting of the
sync_master_info
system
variable. You can change the setting only when no
replication threads are executing.
Property | Value |
---|---|
Command-Line Format | --max-relay-log-size=# |
System Variable | max_relay_log_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 1073741824 |
If a write by a replication slave to its relay log causes
the current log file size to exceed the value of this
variable, the slave rotates the relay logs (closes the
current file and opens the next one). If
max_relay_log_size
is 0,
the server uses
max_binlog_size
for both
the binary log and the relay log. If
max_relay_log_size
is
greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs.
You must set
max_relay_log_size
to
between 4096 bytes and 1GB (inclusive), or to 0. The default
value is 0. See
Section 17.2.2, “Replication Implementation Details”.
Property | Value |
---|---|
Command-Line Format | --relay-log=file_name |
System Variable | relay_log |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
The base name for relay log files. For the default
replication channel, the default base name for relay logs is
.
For non-default replication channels, the default base name
for relay logs is
host_name
-relay-bin
,
where host_name
-relay-bin-channel
channel
is the name of the
replication channel recorded in this relay log.
The server writes the file in the data directory unless the base name is given with a leading absolute path name to specify a different directory. The server creates relay log files in sequence by adding a numeric suffix to the base name.
The relay log and relay log index on a replication server
cannot be given the same names as the binary log and binary
log index, whose names are specified by the
--log-bin
and
--log-bin-index
options. The
server issues an error message and does not start if the
binary log and relay log file base names would be the same.
Due to the manner in which MySQL parses server options, if
you specify this variable at server startup, you must supply
a value; the default base name is used only if the
option is not actually specified. If you specify
the relay_log
system
variable at server startup without specifying a value,
unexpected behavior is likely to result; this behavior
depends on the other options used, the order in which they
are specified, and whether they are specified on the command
line or in an option file. For more information about how
MySQL handles server options, see
Section 4.2.2, “Specifying Program Options”.
If you specify this variable, the value specified is also
used as the base name for the relay log index file. You can
override this behavior by specifying a different relay log
index file base name using the
relay_log_index
system
variable.
When the server reads an entry from the index file, it
checks whether the entry contains a relative path. If it
does, the relative part of the path is replaced with the
absolute path set using the
relay_log
system variable.
An absolute path remains unchanged; in such a case, the
index must be edited manually to enable the new path or
paths to be used.
You may find the relay_log
system variable useful in performing the following tasks:
Creating relay logs whose names are independent of host names.
If you need to put the relay logs in some area other
than the data directory because your relay logs tend to
be very large and you do not want to decrease
max_relay_log_size
.
To increase speed by using load-balancing between disks.
You can obtain the relay log file name (and path) from the
relay_log_basename
system
variable.
Property | Value |
---|---|
System Variable | relay_log_basename |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
Default Value | datadir + '/' + hostname + '-relay-bin' |
Holds the name and complete path to the relay log file. This variable is set by the server and is read only.
Property | Value |
---|---|
Command-Line Format | --relay-log-index=file_name |
System Variable | relay_log_index |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
Default Value | *host_name*-relay-bin.index |
The name for the relay log index file. If you do not specify
this variable, but the
relay_log
system variable
is specified, its value is used as the default base name for
the relay log index file. If
relay_log
is also not
specified, then for the default replication channel, the
default name is
,
using the name of the host machine. For non-default
replication channels, the default name is
host_name
-relay-bin.index
,
where host_name
-relay-bin-channel
.indexchannel
is the name of the
replication channel recorded in this relay log index.
The default location for relay log files is the data
directory, or any other location that was specified using
the relay_log
system
variable. You can use the
relay_log_index
system
variable to specify an alternative location, by adding a
leading absolute path name to the base name to specify a
different directory.
The relay log and relay log index on a replication server
cannot be given the same names as the binary log and binary
log index, whose names are specified by the
--log-bin
and
--log-bin-index
options. The
server issues an error message and does not start if the
binary log and relay log file base names would be the same.
Due to the manner in which MySQL parses server options, if
you specify this variable at server startup, you must supply
a value; the default base name is used only if the
option is not actually specified. If you specify
the relay_log_index
system
variable at server startup without specifying a value,
unexpected behavior is likely to result; this behavior
depends on the other options used, the order in which they
are specified, and whether they are specified on the command
line or in an option file. For more information about how
MySQL handles server options, see
Section 4.2.2, “Specifying Program Options”.
Property | Value |
---|---|
Command-Line Format | --relay-log-info-file=file_name |
Deprecated | 8.0.18 |
System Variable | relay_log_info_file |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
Default Value | relay-log.info |
The name of the file in which the slave records information
about the relay logs, when
relay_log_info_repository=FILE
.
If
relay_log_info_repository=TABLE
,
it is the file name that would be used in case the
repository was changed to FILE
). The
default name is relay-log.info
in the
data directory.
relay_log_info_file
and the
setting
relay_log_info_repository=FILE
are deprecated, as the use of a file for the relay log info
log has been superseded by crash-safe slave tables. For
information about the relay log info log, see
Section 17.2.4.2, “Slave Status Logs”.
Property | Value |
---|---|
Command-Line Format | --relay-log-info-repository=value |
System Variable | relay_log_info_repository |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | String |
Default Value | TABLE |
Valid Values |
|
The setting of this variable determines whether the slave
server logs its position in the relay logs to an
InnoDB
table in the
mysql
system database, or to a file in
the data directory.
The default setting is TABLE
. As an
InnoDB
table, the relay log info log is
named mysql.slave_relay_log_info
. The
TABLE
setting is required when multiple
replication channels are configured. The
TABLE
setting for the relay log info log
is also required to make replication resilient to unexpected
halts, for which the
--relay-log-recovery
option
must also be enabled. See
Making replication resilient to unexpected halts for
more information.
The FILE
setting is deprecated, and will
be removed in a future release. As a file, the relay log
info log is named relay-log.info
by
default, and you can change this name using the
relay_log_info_file
system
variable.
The setting for the location of this slave status log has a
direct influence on the effect had by the setting of the
sync_relay_log_info
system
variable. You can change the setting only when no
replication threads are executing.
Property | Value |
---|---|
Command-Line Format | --relay-log-purge[={OFF|ON}] |
System Variable | relay_log_purge |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
Disables or enables automatic purging of relay log files as
soon as they are not needed any more. The default value is 1
(ON
).
Property | Value |
---|---|
Command-Line Format | --relay-log-recovery[={OFF|ON}] |
System Variable | relay_log_recovery |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
If enabled, this variable enables automatic relay log
recovery immediately following server startup. The recovery
process creates a new relay log file, initializes the SQL
thread position to this new relay log, and initializes the
I/O thread to the SQL thread position. Reading of the relay
log from the master then continues. This global variable is
read-only at runtime. Its value can set with the
--relay-log-recovery
option
at slave startup, which should be used following an
unexpected halt of a replication slave to ensure that no
possibly corrupted relay logs are processed, and must be
used in order to guarantee a crash-safe slave. The default
value is 0 (disabled).
To provide a crash-safe slave, this variable must be enabled
(set to 1),
relay_log_info_repository
must be set to TABLE
, and
relay_log_purge
must be
enabled. Enabling
relay_log_recovery
when
relay_log_purge
is disabled
risks reading the relay log from files that were not purged,
leading to data inconsistency, and is therefore not
crash-safe. See
Making replication resilient to unexpected halts, for
more information.
When using a multithreaded slave (in other words
slave_parallel_workers
is
greater than 0), inconsistencies such as gaps can occur in
the sequence of transactions that have been executed from
the relay log. Enabling
relay_log_recovery
when
there are inconsistencies causes an error and the option has
no effect. The solution in this situation is to issue
START SLAVE
UNTIL SQL_AFTER_MTS_GAPS
, which brings the server
to a more consistent state, then issue
RESET SLAVE
to remove the
relay logs. See
Section 17.5.1.33, “Replication and Transaction Inconsistencies”
for more information.
This variable does not affect the following Group Replication channels:
group_replication_applier
group_replication_recovery
Any other channels running on a group are affected, such as a channel which is replicating from an outside master or another group.
Property | Value |
---|---|
Command-Line Format | --relay-log-space-limit=# |
System Variable | relay_log_space_limit |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The maximum amount of space to use for all relay logs.
Property | Value |
---|---|
Command-Line Format | --report-host=host_name |
System Variable | report_host |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
The host name or IP address of the slave to be reported to
the master during slave registration. This value appears in
the output of SHOW SLAVE
HOSTS
on the master server. Leave the value unset
if you do not want the slave to register itself with the
master.
It is not sufficient for the master to simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or other hosts.
Property | Value |
---|---|
Command-Line Format | --report-password=name |
System Variable | report_password |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
The account password of the slave to be reported to the
master during slave registration. This value appears in the
output of SHOW SLAVE HOSTS
on
the master server if the master was started with
--show-slave-auth-info
.
Although the name of this variable might imply otherwise,
report_password
is not
connected to the MySQL user privilege system and so is not
necessarily (or even likely to be) the same as the password
for the MySQL replication user account.
Property | Value |
---|---|
Command-Line Format | --report-port=port_num |
System Variable | report_port |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | [slave_port] |
Minimum Value | 0 |
Maximum Value | 65535 |
The TCP/IP port number for connecting to the slave, to be reported to the master during slave registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel from the master or other clients to the slave. If you are not sure, do not use this option.
The default value for this option is the port number
actually used by the slave. This is also the default value
displayed by SHOW SLAVE
HOSTS
.
Property | Value |
---|---|
Command-Line Format | --report-user=name |
System Variable | report_user |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
The account user name of the slave to be reported to the
master during slave registration. This value appears in the
output of SHOW SLAVE HOSTS
on
the master server if the master was started with
--show-slave-auth-info
.
Although the name of this variable might imply otherwise,
report_user
is not
connected to the MySQL user privilege system and so is not
necessarily (or even likely to be) the same as the name of
the MySQL replication user account.
Property | Value |
---|---|
Command-Line Format | --rpl-read-size=# |
System Variable | rpl_read_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 8192 |
Minimum Value | 8192 |
Maximum Value | 4294967295 |
The rpl_read_size
system
variable controls the minimum amount of data in bytes that
is read from the binary log files and relay log files. If
heavy disk I/O activity for these files is impeding
performance for the database, increasing the read size might
reduce file reads and I/O stalls when the file data is not
currently cached by the operating system.
The minimum and default value for
rpl_read_size
is 8192
bytes. The value must be a multiple of 4KB. Note that a
buffer the size of this value is allocated for each thread
that reads from the binary log and relay log files,
including dump threads on masters and coordinator threads on
slaves. Setting a large value might therefore have an impact
on memory consumption for servers.
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-slave-enabled[={OFF|ON}] |
System Variable | rpl_semi_sync_slave_enabled |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Controls whether semisynchronous replication is enabled on
the slave. To enable or disable the plugin, set this
variable to ON
or OFF
(or 1 or 0), respectively. The default is
OFF
.
This variable is available only if the slave-side semisynchronous replication plugin is installed.
rpl_semi_sync_slave_trace_level
Property | Value |
---|---|
Command-Line Format | --rpl-semi-sync-slave-trace-level=# |
System Variable | rpl_semi_sync_slave_trace_level |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 32 |
The semisynchronous replication debug trace level on the
slave. See
rpl_semi_sync_master_trace_level
for the permissible values.
This variable is available only if the slave-side semisynchronous replication plugin is installed.
Property | Value |
---|---|
Command-Line Format | --rpl-stop-slave-timeout=seconds |
System Variable | rpl_stop_slave_timeout |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 31536000 |
Minimum Value | 2 |
Maximum Value | 31536000 |
You can control the length of time (in seconds) that
STOP SLAVE
waits before
timing out by setting this variable. This can be used to
avoid deadlocks between STOP SLAVE
and
other slave SQL statements using different client
connections to the slave.
The maximum and default value of
rpl_stop_slave_timeout
is 31536000
seconds (1 year). The minimum is 2 seconds. Changes to this
variable take effect for subsequent
STOP SLAVE
statements.
This variable affects only the client that issues a
STOP SLAVE
statement. When the timeout is
reached, the issuing client returns an error message stating
that the command execution is incomplete. The client then
stops waiting for the slave threads to stop, but the slave
threads continue to try to stop, and the STOP
SLAVE
instruction remains in effect. Once the
slave threads are no longer busy, the STOP
SLAVE
statement is executed and the slave stops.
Property | Value |
---|---|
Command-Line Format | --slave-checkpoint-group=# |
System Variable | slave_checkpoint_group |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 512 |
Minimum Value | 32 |
Maximum Value | 524280 |
Block Size | 8 |
Sets the maximum number of transactions that can be
processed by a multithreaded slave before a checkpoint
operation is called to update its status as shown by
SHOW SLAVE STATUS
. Setting
this variable has no effect on slaves for which
multithreading is not enabled. Setting this variable has no
immediate effect. The state of the variable applies on all
subsequent START SLAVE
commands.
Multithreaded slaves are not currently supported by NDB Cluster, which silently ignores the setting for this variable. See Section 22.6.3, “Known Issues in NDB Cluster Replication”, for more information.
This variable works in combination with the
slave_checkpoint_period
system variable in such a way that, when either limit is
exceeded, the checkpoint is executed and the counters
tracking both the number of transactions and the time
elapsed since the last checkpoint are reset.
The minimum allowed value for this variable is 32, unless
the server was built using
-DWITH_DEBUG
, in which case
the minimum value is 1. The effective value is always a
multiple of 8; you can set it to a value that is not such a
multiple, but the server rounds it down to the next lower
multiple of 8 before storing the value.
(Exception: No such rounding is
performed by the debug server.) Regardless of how the server
was built, the default value is 512, and the maximum allowed
value is 524280.
Property | Value |
---|---|
Command-Line Format | --slave-checkpoint-period=# |
System Variable | slave_checkpoint_period |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 300 |
Minimum Value | 1 |
Maximum Value | 4G |
Sets the maximum time (in milliseconds) that is allowed to
pass before a checkpoint operation is called to update the
status of a multithreaded slave as shown by
SHOW SLAVE STATUS
. Setting
this variable has no effect on slaves for which
multithreading is not enabled. Setting this variable takes
effect for all replication channels immediately, including
running channels.
Multithreaded slaves are not currently supported by NDB Cluster, which silently ignores the setting for this variable. See Section 22.6.3, “Known Issues in NDB Cluster Replication”, for more information.
This variable works in combination with the
slave_checkpoint_group
system variable in such a way that, when either limit is
exceeded, the checkpoint is executed and the counters
tracking both the number of transactions and the time
elapsed since the last checkpoint are reset.
The minimum allowed value for this variable is 1, unless the
server was built using
-DWITH_DEBUG
, in which case
the minimum value is 0. Regardless of how the server was
built, the default value is 300, and the maximum possible
value is 4294967296 (4GB).
Property | Value |
---|---|
Command-Line Format | --slave-compressed-protocol[={OFF|ON}] |
Deprecated | 8.0.18 |
System Variable | slave_compressed_protocol |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Whether to use compression of the master/slave protocol if
both master and slave support it. If this variable is
disabled (the default), connections are uncompressed.
Changes to this variable take effect on subsequent
connection attempts; this includes after issuing a
START SLAVE
statement, as
well as reconnections made by a running I/O thread (for
example, after setting the
MASTER_RETRY_COUNT
option for the
CHANGE MASTER TO
statement).
Binary log transaction compression (available as of MySQL
8.0.20), which is activated by the
binlog_transaction_compression
system variable, can also be used to save bandwidth. If you
use binary log transaction compression in combination with
protocol compression, protocol compression has less
opportunity to act on the data, but can still compress
headers and those events and transaction payloads that are
uncompressed. For more information on binary log transaction
compression, see
Section 5.4.4.5, “Binary Log Transaction Compression”.
As of MySQL 8.0.18, if
slave_compressed_protocol
is enabled, it takes precedence over any
MASTER_COMPRESSION_ALGORITHMS
option
specified for the CHANGE MASTER
TO
statement. In this case, connections to the
master use zlib
compression if both the
master and slave support that algorithm. If
slave_compressed_protocol
is disabled, the value of
MASTER_COMPRESSION_ALGORITHMS
applies.
For more information, see
Section 4.2.7, “Connection Compression Control”.
As of MySQL 8.0.18, this system variable is deprecated. It will be removed in a future MySQL version. See Legacy Connection Compression Configuration.
Property | Value |
---|---|
Command-Line Format | --slave-exec-mode=mode |
System Variable | slave_exec_mode |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value |
|
Valid Values |
|
Controls how a slave thread resolves conflicts and errors
during replication. IDEMPOTENT
mode
causes suppression of duplicate-key and no-key-found errors;
STRICT
means no such suppression takes
place.
IDEMPOTENT
mode is intended for use in
multi-master replication, circular replication, and some
other special replication scenarios for NDB Cluster
Replication. (See
Section 22.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”,
and
Section 22.6.11, “NDB Cluster Replication Conflict Resolution”,
for more information.) NDB Cluster ignores any value
explicitly set for
slave_exec_mode
, and always
treats it as IDEMPOTENT
.
In MySQL Server 8.0, STRICT
mode is the default value.
Setting this variable takes immediate effect for all replication channels, including running channels.
For storage engines other than
NDB
,
IDEMPOTENT
mode should be used
only when you are absolutely sure that duplicate-key errors
and key-not-found errors can safely be ignored.
It is meant to be used in fail-over scenarios for NDB
Cluster where multi-master replication or circular
replication is employed, and is not recommended for use in
other cases.
Property | Value |
---|---|
Command-Line Format | --slave-load-tmpdir=dir_name |
System Variable | slave_load_tmpdir |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Directory name |
Default Value | Value of --tmpdir |
The name of the directory where the slave creates temporary
files. Setting this variable takes effect for all
replication channels immediately, including running
channels. The variable value is by default equal to the
value of the tmpdir
system
variable, or the default that applies when that system
variable is not specified.
When the slave SQL thread replicates a
LOAD DATA
statement, it
extracts the file to be loaded from the relay log into
temporary files, and then loads these into the table. If the
file loaded on the master is huge, the temporary files on
the slave are huge, too. Therefore, it might be advisable to
use this option to tell the slave to put temporary files in
a directory located in some file system that has a lot of
available space. In that case, the relay logs are huge as
well, so you might also want to set the
relay_log
system variable
to place the relay logs in that file system.
The directory specified by this option should be located in
a disk-based file system (not a memory-based file system) so
that the temporary files used to replicate
LOAD DATA
statements can
survive machine restarts. The directory also should not be
one that is cleared by the operating system during the
system startup process. However, replication can now
continue after a restart if the temporary files have been
removed.
Property | Value |
---|---|
Command-Line Format | --slave-max-allowed-packet=# |
System Variable | slave_max_allowed_packet |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1073741824 |
Minimum Value | 1024 |
Maximum Value | 1073741824 |
This option sets the maximum packet size in bytes that the
slave SQL and I/O threads can handle. Setting this variable
takes effect for all replication channels immediately,
including running channels. It is possible for a replication
master to write binary log events longer than its
max_allowed_packet
setting
once the event header is added. The setting for
slave_max_allowed_packet
must be larger than the
max_allowed_packet
setting
on the master, so that large updates using row-based
replication do not cause replication to fail.
This global variable always has a value that is a positive
integer multiple of 1024; if you set it to some value that
is not, the value is rounded down to the next highest
multiple of 1024 for it is stored or used; setting
slave_max_allowed_packet
to 0 causes 1024
to be used. (A truncation warning is issued in all such
cases.) The default and maximum value is 1073741824 (1 GB);
the minimum is 1024.
Property | Value |
---|---|
Command-Line Format | --slave-net-timeout=# |
System Variable | slave_net_timeout |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 60 |
Minimum Value | 1 |
The number of seconds to wait for more data or a heartbeat
signal from the master before the slave considers the
connection broken, aborts the read, and tries to reconnect.
Setting this variable has no immediate effect. The state of
the variable applies on all subsequent
START SLAVE
commands.
The default value is 60 seconds (one minute). The first
retry occurs immediately after the timeout. The interval
between retries is controlled by the
MASTER_CONNECT_RETRY
option for the
CHANGE MASTER TO
statement,
and the number of reconnection attempts is limited by the
MASTER_RETRY_COUNT
option for the
CHANGE MASTER TO
statement.
The heartbeat interval, which stops the connection timeout
occurring in the absence of data if the connection is still
good, is controlled by the
MASTER_HEARTBEAT_PERIOD
option for the
CHANGE MASTER TO
statement.
The heartbeat interval defaults to half the value of
slave_net_timeout
, and it
is recorded in the master info log and shown in the
replication_connection_configuration
Performance Schema table. Note that a change to the value or
default setting of
slave_net_timeout
does not
automatically change the heartbeat interval, whether that
has been set explicitly or is using a previously calculated
default. If the connection timeout is changed, you must also
issue CHANGE MASTER TO
to
adjust the heartbeat interval to an appropriate value so
that it occurs before the connection timeout.
Property | Value |
---|---|
Command-Line Format | --slave-parallel-type=value |
System Variable | slave_parallel_type |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | DATABASE |
Valid Values |
|
For multithreaded slaves (replication slaves on which
slave_parallel_workers
is
set to a value greater than 0),
slave_parallel_type
specifies the policy used to decide which transactions are
allowed to execute in parallel on the slave. The variable
has no effect on slaves for which multithreading is not
enabled. The possible values are:
LOGICAL_CLOCK
: Transactions that are
part of the same binary log group commit on a master are
applied in parallel on a slave. The dependencies between
transactions are tracked based on their timestamps to
provide additional parallelization where possible. When
this value is set, the
binlog_transaction_dependency_tracking
system variable can be used on the master to specify
that write sets are used for parallelization in place of
timestamps, if a write set is available for the
transaction and gives improved results compared to
timestamps.
DATABASE
: Transactions that update
different databases are applied in parallel. This value
is only appropriate if data is partitioned into multiple
databases which are being updated independently and
concurrently on the master. There must be no
cross-database constraints, as such constraints may be
violated on the slave.
When
slave_preserve_commit_order=1
is set, you can only use LOGICAL_CLOCK
.
When your replication topology uses multiple levels of
slaves, LOGICAL_CLOCK
may achieve less
parallelization for each level the slave is away from the
master. You can reduce this effect by using
binlog_transaction_dependency_tracking
on the master to specify that write sets are used instead of
timestamps for parallelization where possible.
When binary log transaction compression is enabled using the
binlog_transaction_compression
system variable, if
slave_parallel_type
is set
to DATABASE
, all the databases affected
by the transaction are mapped before the transaction is
scheduled. The use of binary log transaction compression
with the DATABASE
policy can reduce
parallelism compared to uncompressed transactions, which are
mapped and scheduled for each event.
Property | Value |
---|---|
Command-Line Format | --slave-parallel-workers=# |
System Variable | slave_parallel_workers |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 1024 |
Enables multithreading on the slave and sets the number of slave applier threads for executing replication transactions in parallel. When the value is a number greater than 0, the slave is a multithreaded slave with the specified number of applier threads, plus a coordinator thread to manage them. If you are using multiple replication channels, each channel has this number of threads.
Multithreaded slaves are not currently supported by NDB Cluster, which silently ignores the setting for this variable. See Section 22.6.3, “Known Issues in NDB Cluster Replication”, for more information.
Retrying of transactions is supported when multithreading is
enabled on a slave. When
slave_preserve_commit_order=1
,
transactions on a slave are externalized on the slave in the
same order as they appear in the slave's relay log. The way
in which transactions are distributed among applier threads
is configured by
slave_parallel_type
.
To disable parallel execution, set this option to 0, which
gives the slave a single applier thread and no coordinator
thread. With this setting, the
slave_parallel_type
and
slave_preserve_commit_order
system variables have no effect and are ignored.
Setting
slave_parallel_workers
has
no immediate effect. The state of the variable applies on
all subsequent START SLAVE
statements.
Property | Value |
---|---|
Command-Line Format | --slave-pending-jobs-size-max=# |
System Variable | slave_pending_jobs_size_max |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value (≥ 8.0.12) | 128M |
Default Value (8.0.11) | 16M |
Minimum Value | 1024 |
Maximum Value | 16EiB |
Block Size | 1024 |
For multithreaded slaves, this variable sets the maximum
amount of memory (in bytes) available to slave worker queues
holding events not yet applied. Setting this variable has no
effect on slaves for which multithreading is not enabled.
Setting this variable has no immediate effect. The state of
the variable applies on all subsequent
START SLAVE
commands.
The minimum possible value for this variable is 1024 bytes; the default is 128MB. The maximum possible value is 18446744073709551615 (16 exbibytes). Values that are not exact multiples of 1024 bytes are rounded down to the next lower multiple of 1024 bytes prior to being stored.
The value of this variable is a soft limit and can be set to match the normal workload. If an unusually large event exceeds this size, the transaction is held until all the slave workers have empty queues, and then processed. All subsequent transactions are held until the large transaction has been completed.
Property | Value |
---|---|
Command-Line Format | --slave-preserve-commit-order[={OFF|ON}] |
System Variable | slave_preserve_commit_order |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
For multithreaded slaves (replication slaves on which
slave_parallel_workers
is
set to a value greater than 0), setting
slave_preserve_commit_order=1
ensures that transactions are executed and committed on the
slave in the same order as they appear in the slave's
relay log. This prevents gaps in the sequence of
transactions that have been executed from the slave's relay
log, and preserves the same transaction history on the slave
as on the master (with the limitations listed below). This
variable has no effect on slaves for which multithreading is
not enabled.
Up to and including MySQL 8.0.18, setting
slave_preserve_commit_order=1
requires that binary logging
(log_bin
) and slave update
logging (log_slave_updates
)
are enabled on the slave, which are the default settings
from MySQL 8.0. From MySQL 8.0.19, binary logging and slave
update logging are not required on the slave to set
slave_preserve_commit_order=1
,
and can be disabled if wanted. In all releases, setting
slave_preserve_commit_order=1
requires that
slave_parallel_type
is set
to LOGICAL_CLOCK
, which is
not the default setting. Before
changing the value of
slave_preserve_commit_order
and slave_parallel_type
,
the slave SQL thread (for all replication channels if you
are using multiple replication channels) must be stopped.
When
slave_preserve_commit_order=0
is set, which is the default, the transactions that a
multithreaded slave applies in parallel may commit out of
order. Therefore, checking for the most recently executed
transaction does not guarantee that all previous
transactions from the master have been executed on the
slave. There is a chance of gaps in the sequence of
transactions that have been executed from the slave's relay
log. This has implications for logging and recovery when
using a multithreaded slave. See
Section 17.5.1.33, “Replication and Transaction Inconsistencies”
for more information.
When
slave_preserve_commit_order=1
is set, the executing worker thread waits until all previous
transactions are committed before committing. While a given
thread is waiting for other worker threads to commit their
transactions, it reports its status as Waiting for
preceding transaction to commit
. With this mode, a
multithreaded slave never enters a state that the master was
not in. This supports the use of replication for read
scale-out. See
Section 17.4.5, “Using Replication for Scale-Out”.
slave_preserve_commit_order=1
does not prevent master log position lag, where
Exec_master_log_pos
is behind the
position up to which transactions have been executed.
See
Section 17.5.1.33, “Replication and Transaction Inconsistencies”.
slave_preserve_commit_order=1
does not preserve the commit order and transaction
history if the slave uses filters on its binary log,
such as --binlog-do-db
.
slave_preserve_commit_order=1
does not preserve the order of non-transactional DML
updates. These might commit before transactions that
precede them in the relay log, which might result in
gaps in the sequence of transactions that have been
executed from the slave's relay log.
In releases before MySQL 8.0.19,
slave_preserve_commit_order=1
does not preserve the order of statements with an
IF EXISTS
clause when the object
concerned does not exist. These might commit before
transactions that precede them in the relay log, which
might result in gaps in the sequence of transactions
that have been executed from the slave's relay log.
A limitation to preserving the commit order on the slave can occur if statement-based replication is in use, and both transactional and non-transactional storage engines participate in a non-XA transaction that is rolled back on the master. Normally, non-XA transactions that are rolled back on the master are not replicated to the slave, but in this particular situation, the transaction might be replicated to the slave. If this does happen, a multithreaded slave without binary logging does not handle the transaction rollback, so the commit order on the slave diverges from the relay log order of the transactions in that case.
Property | Value |
---|---|
Command-Line Format | --slave-rows-search-algorithms=value |
Deprecated | 8.0.18 |
System Variable | slave_rows_search_algorithms |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Set |
Default Value | INDEX_SCAN,HASH_SCAN |
Valid Values |
|
When preparing batches of rows for row-based logging and
replication, this system variable controls how the rows are
searched for matches, in particular whether hash scans are
used. The use of this system variable is now deprecated. The
default setting INDEX_SCAN,HASH_SCAN
is
optimal for performance and works correctly in all
scenarios.
Property | Value |
---|---|
Command-Line Format | --slave-skip-errors=name |
System Variable | slave_skip_errors |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
Default Value | OFF |
Valid Values |
|
Normally, replication stops when an error occurs on the slave, which gives you the opportunity to resolve the inconsistency in the data manually. This variable causes the slave SQL thread to continue replication when a statement returns any of the errors listed in the variable value.
Property | Value |
---|---|
Command-Line Format | --slave-sql-verify-checksum[={OFF|ON}] |
System Variable | slave_sql_verify_checksum |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
Cause the slave SQL thread to verify data using the checksums read from the relay log. In the event of a mismatch, the slave stops with an error. Setting this variable takes effect for all replication channels immediately, including running channels.
The slave I/O thread always reads checksums if possible when accepting events from over the network.
Property | Value |
---|---|
Command-Line Format | --slave-transaction-retries=# |
System Variable | slave_transaction_retries |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 10 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
Sets the maximum number of times for replication slave SQL threads on a single-threaded or multithreaded slave to automatically retry failed transactions before stopping. Setting this variable takes effect for all replication channels immediately, including running channels. The default value is 10. Setting the variable to 0 disables automatic retrying of transactions.
If a replication slave SQL thread fails to execute a
transaction because of an
InnoDB
deadlock or because the
transaction's execution time exceeded
InnoDB
's
innodb_lock_wait_timeout
or
NDB
's
TransactionDeadlockDetectionTimeout
or
TransactionInactiveTimeout
,
it automatically retries
slave_transaction_retries
times before stopping with an error. Transactions with a
non-temporary error are not retried.
The Performance Schema table
replication_applier_status
shows the number of retries that took place on each
replication channel, in the
COUNT_TRANSACTIONS_RETRIES
column. The
Performance Schema table
replication_applier_status_by_worker
shows detailed information on transaction retries by
individual applier threads on a single-threaded or
multithreaded replication slave, and identifies the errors
that caused the last transaction and the transaction
currently in progress to be reattempted.
Property | Value |
---|---|
Command-Line Format | --slave-type-conversions=set |
System Variable | slave_type_conversions |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Set |
Default Value |
|
Valid Values |
|
Controls the type conversion mode in effect on the slave
when using row-based replication. Its value is a
comma-delimited set of zero or more elements from the list:
ALL_LOSSY
,
ALL_NON_LOSSY
,
ALL_SIGNED
,
ALL_UNSIGNED
. Set this variable to an
empty string to disallow type conversions between the master
and the slave. Setting this variable takes effect for all
replication channels immediately, including running
channels.
For additional information on type conversion modes applicable to attribute promotion and demotion in row-based replication, see Row-based replication: attribute promotion and demotion.
Property | Value |
---|---|
System Variable | sql_slave_skip_counter |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
The number of events from the master that a slave server
should skip. Setting the option has no immediate effect. The
variable applies to the next START
SLAVE
statement; the next
START SLAVE
statement also
changes the value back to 0. When this variable is set to a
nonzero value and there are multiple replication channels
configured, the START SLAVE
statement can only be used with the FOR CHANNEL
clause.
channel
This option is incompatible with GTID-based replication, and
must not be set to a nonzero value when
gtid_mode=ON
. If you need
to skip transactions when employing GTIDs, use
gtid_executed
from the
master instead. See
Section 17.1.7.3, “Skipping Transactions”.
If skipping the number of events specified by setting this variable would cause the slave to begin in the middle of an event group, the slave continues to skip until it finds the beginning of the next event group and begins from that point. For more information, see Section 17.1.7.3, “Skipping Transactions”.
Property | Value |
---|---|
Command-Line Format | --sync-master-info=# |
System Variable | sync_master_info |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 10000 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The effects of this variable on a replication slave depend
on whether the slave's
master_info_repository
is
set to FILE
or TABLE
,
as explained in the following paragraphs.
master_info_repository = FILE.
If the value of sync_master_info
is
greater than 0, the slave synchronizes its
master.info
file to disk (using
fdatasync()
) after every
sync_master_info
events. If it is 0,
the MySQL server performs no synchronization of the
master.info
file to disk; instead,
the server relies on the operating system to flush its
contents periodically as with any other file.
master_info_repository = TABLE.
If the value of sync_master_info
is
greater than 0, the slave updates its master info
repository table after every
sync_master_info
events. If it is 0,
the table is never updated.
The default value for sync_master_info
is
10000. Setting this variable takes effect for all
replication channels immediately, including running
channels.
Property | Value |
---|---|
Command-Line Format | --sync-relay-log=# |
System Variable | sync_relay_log |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 10000 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
If the value of this variable is greater than 0, the MySQL
server synchronizes its relay log to disk (using
fdatasync()
) after every
sync_relay_log
events are written to the
relay log. Setting this variable takes effect for all
replication channels immediately, including running
channels.
Setting sync_relay_log
to 0 causes no
synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's
contents from time to time as for any other file.
A value of 1 is the safest choice because in the event of a crash you lose at most one event from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization very fast).
Property | Value |
---|---|
Command-Line Format | --sync-relay-log-info=# |
System Variable | sync_relay_log_info |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 10000 |
Minimum Value | 0 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The default value for sync_relay_log_info
is 10000. Setting this variable takes effect for all
replication channels immediately, including running
channels.
The effects of this variable on the replication slave depend
on the server's
relay_log_info_repository
setting (FILE
or
TABLE
). If the setting is
TABLE
, the effects of the variable also
depend on whether the storage engine used by the relay log
info table is transactional (such as
InnoDB
) or not transactional
(MyISAM
). The effects of these
factors on the behavior of the server for
sync_relay_log_info
values of zero and
greater than zero are as follows:
sync_relay_log_info = 0
If
relay_log_info_repository
is set to FILE
, the MySQL
server performs no synchronization of the
relay-log.info
file to disk;
instead, the server relies on the operating system
to flush its contents periodically as with any
other file.
If
relay_log_info_repository
is set to TABLE
, and the
storage engine for that table is transactional,
the table is updated after each transaction. (The
sync_relay_log_info
setting is
effectively ignored in this case.)
If
relay_log_info_repository
is set to TABLE
, and the
storage engine for that table is not
transactional, the table is never updated.
sync_relay_log_info =
N
> 0
If
relay_log_info_repository
is set to FILE
, the slave
synchronizes its
relay-log.info
file to disk
(using fdatasync()
) after every
N
transactions.
If
relay_log_info_repository
is set to TABLE
, and the
storage engine for that table is transactional,
the table is updated after each transaction. (The
sync_relay_log_info
setting is
effectively ignored in this case.)
If
relay_log_info_repository
is set to TABLE
, and the
storage engine for that table is not
transactional, the table is updated after every
N
events.
You can use the mysqld options and system variables that are described in this section to affect the operation of the binary log as well as to control which statements are written to the binary log. For additional information about the binary log, see Section 5.4.4, “The Binary Log”. For additional information about using MySQL server options and system variables, see Section 5.1.7, “Server Command Options”, and Section 5.1.8, “Server System Variables”.
The following list describes startup options for enabling and configuring the binary log. System variables used with binary logging are discussed later in this section.
Property | Value |
---|---|
Command-Line Format | --binlog-row-event-max-size=# |
System Variable (≥ 8.0.14) | binlog_row_event_max_size |
Scope (≥ 8.0.14) | Global |
Dynamic (≥ 8.0.14) | No |
SET_VAR Hint Applies (≥ 8.0.14) |
No |
Type | Integer |
Default Value | 8192 |
Minimum Value | 256 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-based binary log event, in bytes. Where possible, rows stored in the binary log are grouped into events with a size not exceeding the value of this setting. If an event cannot be split, the maximum size can be exceeded. The value must be (or else gets rounded down to) a multiple of 256. The default is 8192 bytes.
Property | Value |
---|---|
Command-Line Format | --log-bin=file_name |
Type | File name |
Specifies the base name to use for binary log files. With
binary logging enabled, the server logs all statements that
change data to the binary log, which is used for backup and
replication. The binary log is a sequence of files with a
base name and numeric extension. The
--log-bin
option value is the base name for
the log sequence. The server creates binary log files in
sequence by adding a numeric suffix to the base name.
If you do not supply the --log-bin
option,
MySQL uses binlog
as the default base
name for the binary log files. For compatibility with
earlier releases, if you supply the
--log-bin
option with no string or with an
empty string, the base name defaults to
,
using the name of the host machine.
host_name
-bin
The default location for binary log files is the data
directory. You can use the --log-bin
option
to specify an alternative location, by adding a leading
absolute path name to the base name to specify a different
directory. When the server reads an entry from the binary
log index file, which tracks the binary log files that have
been used, it checks whether the entry contains a relative
path. If it does, the relative part of the path is replaced
with the absolute path set using the
--log-bin
option. An absolute path recorded
in the binary log index file remains unchanged; in such a
case, the index file must be edited manually to enable a new
path or paths to be used. The binary log file base name and
any specified path are available as the
log_bin_basename
system
variable.
In earlier MySQL versions, binary logging was disabled by
default, and was enabled if you specified the
--log-bin
option. From MySQL 8.0, binary
logging is enabled by default, whether or not you specify
the --log-bin
option. The exception is if
you use mysqld to initialize the data
directory manually by invoking it with the
--initialize
or
--initialize-insecure
option, when binary
logging is disabled by default. It is possible to enable
binary logging in this case by specifying the
--log-bin
option. When binary logging is
enabled, the log_bin
system
variable, which shows the status of binary logging on the
server, is set to ON.
To disable binary logging, you can specify the
--skip-log-bin
or
--disable-log-bin
option at startup. If either of these options is specified
and --log-bin
is also specified, the option
specified later takes precedence. When binary logging is
disabled, the log_bin
system variable is set to OFF.
When GTIDs are in use on the server, if you disable binary
logging when restarting the server after an abnormal
shutdown, some GTIDs are likely to be lost, causing
replication to fail. In a normal shutdown, the set of GTIDs
from the current binary log file is saved in the
mysql.gtid_executed
table. Following an
abnormal shutdown where this did not happen, during recovery
the GTIDs are added to the table from the binary log file,
provided that binary logging is still enabled. If binary
logging is disabled for the server restart, the server
cannot access the binary log file to recover the GTIDs, so
replication cannot be started. Binary logging can be
disabled safely after a normal shutdown.
The --log-slave-updates
and
--slave-preserve-commit-order
options require binary logging. If you disable binary
logging, either omit these options, or specify
--log-slave-updates=OFF
and
--skip-slave-preserve-commit-order
.
MySQL disables these options by default when
--skip-log-bin
or
--disable-log-bin
is specified. If you specify
--log-slave-updates
or
--slave-preserve-commit-order
together with
--skip-log-bin
or
--disable-log-bin
,
a warning or error message is issued.
In MySQL 5.7, a server ID had to be specified when binary
logging was enabled, or the server would not start. In MySQL
8.0, the
server_id
system variable
is set to 1 by default. The server can now be started with
this default server ID when binary logging is enabled, but
an informational message is issued if you do not specify a
server ID explicitly by setting the
server_id
system variable.
For servers that are used in a replication topology, you
must specify a unique nonzero server ID for each server.
For information on the format and management of the binary log, see Section 5.4.4, “The Binary Log”.
Property | Value |
---|---|
Command-Line Format | --log-bin-index=file_name |
System Variable | log_bin_index |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
The name for the binary log index file, which contains the
names of the binary log files. By default, it has the same
location and base name as the value specified for the binary
log files using the --log-bin
option, plus the extension .index
. If
you do not specify --log-bin
,
the default binary log index file name is
binlog.index
. If you specify
--log-bin
option with no
string or an empty string, the default binary log index file
name is
,
using the name of the host machine.
host_name
-bin.index
For information on the format and management of the binary log, see Section 5.4.4, “The Binary Log”.
Statement selection options. The options in the following list affect which statements are written to the binary log, and thus sent by a replication master server to its slaves. There are also options for slave servers that control which statements received from the master should be executed or ignored. For details, see Section 17.1.6.3, “Replication Slave Options and Variables”.
Property | Value |
---|---|
Command-Line Format | --binlog-do-db=name |
Type | String |
This option affects binary logging in a manner similar to
the way that
--replicate-do-db
affects
replication.
The effects of this option depend on whether the
statement-based or row-based logging format is in use, in
the same way that the effects of
--replicate-do-db
depend on
whether statement-based or row-based replication is in use.
You should keep in mind that the format used to log a given
statement may not necessarily be the same as that indicated
by the value of
binlog_format
. For example,
DDL statements such as CREATE
TABLE
and ALTER
TABLE
are always logged as statements, without
regard to the logging format in effect, so the following
statement-based rules for --binlog-do-db
always apply in determining whether or not the statement is
logged.
Statement-based logging.
Only those statements are written to the binary log where
the default database (that is, the one selected by
USE
) is
db_name
. To specify more than
one database, use this option multiple times, once for
each database; however, doing so does
not cause cross-database statements
such as UPDATE
to be logged while a different
database (or no database) is selected.
some_db.some_table
SET
foo='bar'
To specify multiple databases you must use multiple instances of this option. Because database names can contain commas, the list will be treated as the name of a single database if you supply a comma-separated list.
An example of what does not work as you might expect when
using statement-based logging: If the server is started with
--binlog-do-db=sales
and you
issue the following statements, the
UPDATE
statement is
not logged:
USE prices; UPDATE sales.january SET amount=amount+1000;
The main reason for this “just check the default
database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for
example, if you are using multiple-table
DELETE
statements or
multiple-table UPDATE
statements that act across multiple databases). It is also
faster to check only the default database rather than all
databases if there is no need.
Another case which may not be self-evident occurs when a
given database is replicated even though it was not
specified when setting the option. If the server is started
with --binlog-do-db=sales
, the following
UPDATE
statement is logged
even though prices
was not included when
setting --binlog-do-db
:
USE sales; UPDATE prices.discounts SET percentage = percentage + 10;
Because sales
is the default database
when the UPDATE
statement is
issued, the UPDATE
is logged.
Row-based logging.
Logging is restricted to database
db_name
. Only changes to tables
belonging to db_name
are
logged; the default database has no effect on this.
Suppose that the server is started with
--binlog-do-db=sales
and
row-based logging is in effect, and then the following
statements are executed:
USE prices; UPDATE sales.february SET amount=amount+100;
The changes to the february
table in the
sales
database are logged in accordance
with the UPDATE
statement;
this occurs whether or not the
USE
statement was issued.
However, when using the row-based logging format and
--binlog-do-db=sales
, changes
made by the following UPDATE
are not logged:
USE prices; UPDATE prices.march SET amount=amount-25;
Even if the USE prices
statement were
changed to USE sales
, the
UPDATE
statement's
effects would still not be written to the binary log.
Another important difference in
--binlog-do-db
handling for
statement-based logging as opposed to the row-based logging
occurs with regard to statements that refer to multiple
databases. Suppose that the server is started with
--binlog-do-db=db1
, and the
following statements are executed:
USE db1; UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
If you are using statement-based logging, the updates to
both tables are written to the binary log. However, when
using the row-based format, only the changes to
table1
are logged;
table2
is in a different database, so it
is not changed by the UPDATE
.
Now suppose that, instead of the USE db1
statement, a USE db4
statement had been
used:
USE db4; UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
In this case, the UPDATE
statement is not written to the binary log when using
statement-based logging. However, when using row-based
logging, the change to table1
is logged,
but not that to table2
—in other
words, only changes to tables in the database named by
--binlog-do-db
are logged,
and the choice of default database has no effect on this
behavior.
Property | Value |
---|---|
Command-Line Format | --binlog-ignore-db=name |
Type | String |
This option affects binary logging in a manner similar to
the way that
--replicate-ignore-db
affects
replication.
The effects of this option depend on whether the
statement-based or row-based logging format is in use, in
the same way that the effects of
--replicate-ignore-db
depend
on whether statement-based or row-based replication is in
use. You should keep in mind that the format used to log a
given statement may not necessarily be the same as that
indicated by the value of
binlog_format
. For example,
DDL statements such as CREATE
TABLE
and ALTER
TABLE
are always logged as statements, without
regard to the logging format in effect, so the following
statement-based rules for
--binlog-ignore-db
always apply in
determining whether or not the statement is logged.
Statement-based logging.
Tells the server to not log any statement where the
default database (that is, the one selected by
USE
) is
db_name
.
When there is no default database, no
--binlog-ignore-db
options are applied, and
such statements are always logged. (Bug #11829838, Bug
#60188)
Row-based format.
Tells the server not to log updates to any tables in the
database db_name
. The current
database has no effect.
When using statement-based logging, the following example
does not work as you might expect. Suppose that the server
is started with
--binlog-ignore-db=sales
and
you issue the following statements:
USE prices; UPDATE sales.january SET amount=amount+1000;
The UPDATE
statement
is logged in such a case because
--binlog-ignore-db
applies
only to the default database (determined by the
USE
statement). Because the
sales
database was specified explicitly
in the statement, the statement has not been filtered.
However, when using row-based logging, the
UPDATE
statement's
effects are not written to the binary
log, which means that no changes to the
sales.january
table are logged; in this
instance,
--binlog-ignore-db=sales
causes all changes made to tables in
the master's copy of the sales
database to be ignored for purposes of binary logging.
To specify more than one database to ignore, use this option multiple times, once for each database. Because database names can contain commas, the list will be treated as the name of a single database if you supply a comma-separated list.
You should not use this option if you are using cross-database updates and you do not want these updates to be logged.
Checksum options. MySQL supports reading and writing of binary log checksums. These are enabled using the two options listed here:
--binlog-checksum={NONE|CRC32}
Property | Value |
---|---|
Command-Line Format | --binlog-checksum=type |
Type | String |
Default Value | CRC32 |
Valid Values |
|
Enabling this option causes the master to write checksums
for events written to the binary log. Set to
NONE
to disable, or the name of the
algorithm to be used for generating checksums; currently,
only CRC32 checksums are supported, and CRC32 is the
default. You cannot change the setting for this option
within a transaction.
To control reading of checksums by the slave (from the relay
log), use the
--slave-sql-verify-checksum
option.
Testing and debugging options. The following binary log options are used in replication testing and debugging. They are not intended for use in normal operations.
Property | Value |
---|---|
Command-Line Format | --max-binlog-dump-events=# |
Type | Integer |
Default Value | 0 |
This option is used internally by the MySQL test suite for replication testing and debugging.
Property | Value |
---|---|
Command-Line Format | --sporadic-binlog-dump-fail[={OFF|ON}] |
Type | Boolean |
Default Value | OFF |
This option is used internally by the MySQL test suite for replication testing and debugging.
The following list describes system variables for controlling
binary logging. They can be set at server startup and some of
them can be changed at runtime using
SET
.
Server options used to control binary logging are listed earlier
in this section.
Property | Value |
---|---|
Command-Line Format | --binlog-cache-size=# |
System Variable | binlog_cache_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 32768 |
Minimum Value | 4096 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The size of the memory buffer to hold changes to the binary
log during a transaction. When binary logging is enabled on
the server (with the
log_bin
system variable set
to ON), a binary log cache is allocated for each client if
the server supports any transactional storage engines. If
the data for the transaction exceeds the space in the memory
buffer, the excess data is stored in a temporary file. When
binary log encryption is active on the server, the memory
buffer is not encrypted, but (from MySQL 8.0.17) any
temporary file used to hold the binary log cache is
encrypted. After each transaction is committed, the binary
log cache is reset by clearing the memory buffer and
truncating the temporary file if used.
If you often use large transactions, you can increase this
cache size to get better performance by reducing or
eliminating the need to write to temporary files. The
Binlog_cache_use
and
Binlog_cache_disk_use
status variables can be useful for tuning the size of this
variable. See Section 5.4.4, “The Binary Log”.
binlog_cache_size
sets the size for the
transaction cache only; the size of the statement cache is
governed by the
binlog_stmt_cache_size
system variable.
Property | Value |
---|---|
Command-Line Format | --binlog-checksum=name |
System Variable | binlog_checksum |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | String |
Default Value | CRC32 |
Valid Values |
|
When enabled, this variable causes the master to write a
checksum for each event in the binary log.
binlog_checksum
supports the values
NONE
(disabled) and
CRC32
. The default is
CRC32
. When
binlog_checksum
is disabled (value
NONE
), the server verifies that it is
writing only complete events to the binary log by writing
and checking the event length (rather than a checksum) for
each event.
Setting this variable on the master to a value unrecognized
by the slave causes the slave to set its own
binlog_checksum
value to
NONE
, and to stop replication with an
error. If backward compatibility with older slaves is a
concern, you may want to set the value explicitly to
NONE
.
Changing the value of binlog_checksum
causes the binary log to be rotated, because checksums must
be written for an entire binary log file, and never for only
part of one. You cannot change the value of
binlog_checksum
within a transaction.
When binary log transaction compression is enabled using the
binlog_transaction_compression
system variable, checksums are not written for individual
events in a compressed transaction payload. Instead a
checksum is written for the GTID event, and a checksum for
the compressed Transaction_payload_event
.
binlog_direct_non_transactional_updates
Property | Value |
---|---|
Command-Line Format | --binlog-direct-non-transactional-updates[={OFF|ON}] |
System Variable | binlog_direct_non_transactional_updates |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Due to concurrency issues, a slave can become inconsistent when a transaction contains updates to both transactional and nontransactional tables. MySQL tries to preserve causality among these statements by writing nontransactional statements to the transaction cache, which is flushed upon commit. However, problems arise when modifications done to nontransactional tables on behalf of a transaction become immediately visible to other connections because these changes may not be written immediately into the binary log.
The
binlog_direct_non_transactional_updates
variable offers one possible workaround to this issue. By
default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates
causes updates to nontransactional tables to be written
directly to the binary log, rather than to the transaction
cache.
As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
binlog_direct_non_transactional_updates
works only for statements that are replicated using the
statement-based binary logging format; that is,
it works only when the value of
binlog_format
is
STATEMENT
, or when
binlog_format
is
MIXED
and a given statement is being
replicated using the statement-based format. This variable
has no effect when the binary log format is
ROW
, or when
binlog_format
is set to
MIXED
and a given statement is replicated
using the row-based format.
Before enabling this variable, you must make certain that
there are no dependencies between transactional and
nontransactional tables; an example of such a dependency
would be the statement INSERT INTO myisam_table
SELECT * FROM innodb_table
. Otherwise, such
statements are likely to cause the slave to diverge from
the master.
This variable has no effect when the binary log format is
ROW
or MIXED
.
Property | Value |
---|---|
Command-Line Format | --binlog-encryption[={OFF|ON}] |
Introduced | 8.0.14 |
System Variable | binlog_encryption |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Enables encryption for binary log files and relay log files
on this server. OFF
is the default.
ON
sets encryption on for binary log
files and relay log files. Binary logging does not need to
be enabled on the server to enable encryption, so you can
encrypt the relay log files on a slave that has no binary
log. To use encryption, a keyring plugin must be installed
and configured to supply MySQL Server's keyring service. For
instructions to do this, see Section 6.4.4, “The MySQL Keyring”. Any
supported keyring plugin can be used to store binary log
encryption keys.
When you first start the server with binary log encryption enabled, a new binary log encryption key is generated before the binary log and relay logs are initialized. This key is used to encrypt a file password for each binary log file (if the server has binary logging enabled) and relay log file (if the server has replication channels), and further keys generated from the file passwords are used to encrypt the data in the files. Relay log files are encrypted for all channels, including Group Replication applier channels and new channels that are created after encryption is activated. The binary log index file and relay log index file are never encrypted.
If you activate encryption while the server is running, a new binary log encryption key is generated at that time. The exception is if encryption was active previously on the server and was then disabled, in which case the binary log encryption key that was in use before is used again. The binary log file and relay log files are rotated immediately, and file passwords for the new files and all subsequent binary log files and relay log files are encrypted using this binary log encryption key. Existing binary log files and relay log files still present on the server are not automatically encrypted, but you can purge them if they are no longer needed.
If you deactivate encryption by changing the
binlog_encryption
system
variable to OFF
, the binary log file and
relay log files are rotated immediately and all subsequent
logging is unencrypted. Previously encrypted files are not
automatically decrypted, but the server is still able to
read them. The BINLOG_ENCRYPTION_ADMIN
privilege (or the deprecated
SUPER
privilege) is required
to activate or deactivate encryption while the server is
running. Group Replication applier channels are not included
in the relay log rotation request, so unencrypted logging
for these channels does not start until their logs are
rotated in normal use.
For more information on binary log file and relay log file encryption, see Section 17.3.2, “Encrypting Binary Log Files and Relay Log Files”.
Property | Value |
---|---|
Command-Line Format | --binlog-error-action[=value] |
System Variable | binlog_error_action |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | ABORT_SERVER |
Valid Values |
|
Controls what happens when the server encounters an error such as not being able to write to, flush or synchronize the binary log, which can cause the master's binary log to become inconsistent and replication slaves to lose synchronization.
This variable defaults to ABORT_SERVER
,
which makes the server halt logging and shut down whenever
it encounters such an error with the binary log. On restart,
recovery proceeds as in the case of an unexpected server
halt (see
Section 17.4.2, “Handling an Unexpected Halt of a Replication Slave”).
When binlog_error_action
is set to
IGNORE_ERROR
, if the server encounters
such an error it continues the ongoing transaction, logs the
error then halts logging, and continues performing updates.
To resume binary logging
log_bin
must be enabled
again, which requires a server restart. This setting
provides backward compatibility with older versions of
MySQL.
Property | Value |
---|---|
Command-Line Format | --binlog-expire-logs-seconds=# |
System Variable | binlog_expire_logs_seconds |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 2592000 |
Minimum Value | 0 |
Maximum Value | 4294967295 |
Sets the binary log expiration period in seconds. After their expiration period ends, binary log files can be automatically removed. Possible removals happen at startup and when the binary log is flushed. Log flushing occurs as indicated in Section 5.4, “MySQL Server Logs”.
The default binary log expiration period is 2592000 seconds,
which equals 30 days (30*24*60*60 seconds). The default
applies if neither
binlog_expire_logs_seconds
nor the deprecated system variable
expire_logs_days
has a
value set at startup. If a non-zero value for one of the
variables
binlog_expire_logs_seconds
or expire_logs_days
is set
at startup, this value is used as the binary log expiration
period. If a non-zero value for both of those variables is
set at startup, the value for
binlog_expire_logs_seconds
is used as the binary log expiration period, and the value
for expire_logs_days
is
ignored with a warning message.
To disable automatic purging of the binary log, specify a
value of 0 explicitly for
binlog_expire_logs_seconds
,
and do not specify a value for
expire_logs_days
. For
compatibility with earlier releases, automatic purging is
also disabled if you specify a value of 0 explicitly for
expire_logs_days
and do not
specify a value for
binlog_expire_logs_seconds
.
In that case, the default for
binlog_expire_logs_seconds
is not applied.
To remove binary log files manually, use the
PURGE BINARY LOGS
statement.
See Section 13.4.1.1, “PURGE BINARY LOGS Statement”.
Property | Value |
---|---|
Command-Line Format | --binlog-format=format |
System Variable | binlog_format |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | ROW |
Valid Values |
|
This variable sets the binary logging format, and can be any
one of STATEMENT
, ROW
,
or MIXED
. See
Section 17.2.1, “Replication Formats”.
binlog_format
can be set at
startup or at runtime, except that under some conditions,
changing this variable at runtime is not possible or causes
replication to fail, as described later.
The default is ROW
.
Exception: In NDB Cluster, the default
is MIXED
; statement-based replication is
not supported for NDB Cluster.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
The rules governing when changes to this variable take effect and how long the effect lasts are the same as for other MySQL server system variables. For more information, see Section 13.7.6.1, “SET Syntax for Variable Assignment”.
When MIXED
is specified, statement-based
replication is used, except for cases where only row-based
replication is guaranteed to lead to proper results. For
example, this happens when statements contain user-defined
functions (UDF) or the UUID()
function.
For details of how stored programs (stored procedures and functions, triggers, and events) are handled when each binary logging format is set, see Section 24.7, “Stored Program Binary Logging”.
There are exceptions when you cannot switch the replication format at runtime:
The replication format cannot be changed from within a stored function or a trigger.
If a session has open temporary tables, the replication
format cannot be changed for the session (SET
@@SESSION.binlog_format
).
If any replication channel has open temporary tables,
the replication format cannot be changed globally
(SET @@GLOBAL.binlog_format
or
SET @@PERSIST.binlog_format
).
If any replication channel applier thread is currently
running, the replication format cannot be changed
globally (SET @@GLOBAL.binlog_format
or SET @@PERSIST.binlog_format
).
Trying to switch the replication format in any of these
cases (or attempting to set the current replication format)
results in an error. You can, however, use
PERSIST_ONLY
(SET
@@PERSIST_ONLY.binlog_format
) to change the
replication format at any time, because this action does not
modify the runtime global system variable value, and takes
effect only after a server restart.
Switching the replication format at runtime is not recommended when any temporary tables exist, because temporary tables are logged only when using statement-based replication, whereas with row-based replication and mixed replication, they are not logged.
Changing the logging format on a replication master does not
cause a replication slave to change its logging format to
match. Switching the replication format while replication is
ongoing can cause issues if a replication slave has binary
logging enabled, and the change results in the slave using
STATEMENT
format logging while the master
is using ROW
or MIXED
format logging. A replication slave is not able to convert
binary log entries received in ROW
logging format to STATEMENT
format for
use in its own binary log, so this situation can cause
replication to fail. For more information, see
Section 5.4.4.2, “Setting The Binary Log Format”.
The binary log format affects the behavior of the following server options:
These effects are discussed in detail in the descriptions of the individual options.
binlog_group_commit_sync_delay
Property | Value |
---|---|
Command-Line Format | --binlog-group-commit-sync-delay=# |
System Variable | binlog_group_commit_sync_delay |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 1000000 |
Controls how many microseconds the binary log commit waits
before synchronizing the binary log file to disk. By default
binlog_group_commit_sync_delay
is set to 0, meaning that there is no delay. Setting
binlog_group_commit_sync_delay
to a microsecond delay enables more transactions to be
synchronized together to disk at once, reducing the overall
time to commit a group of transactions because the larger
groups require fewer time units per group.
When sync_binlog=0
or
sync_binlog=1
is set, the
delay specified by
binlog_group_commit_sync_delay
is applied for every binary log commit group before
synchronization (or in the case of
sync_binlog=0
, before
proceeding). When
sync_binlog
is set to a
value n greater than 1, the delay is
applied after every n binary log commit
groups.
Setting
binlog_group_commit_sync_delay
can increase the number of parallel committing transactions
on any server that has (or might have after a failover) a
replication slave, and therefore can increase parallel
execution on the replication slaves. To benefit from this
effect, the slave servers must have
slave_parallel_type=LOGICAL_CLOCK
set, and the effect is more significant when
binlog_transaction_dependency_tracking=COMMIT_ORDER
is also set. It is important to take into account both the
master's throughput and the slaves' throughput when you are
tuning the setting for
binlog_group_commit_sync_delay
.
Setting
binlog_group_commit_sync_delay
can also reduce the number of fsync()
calls to the binary log on any server (master or slave) that
has a binary log.
Note that setting
binlog_group_commit_sync_delay
increases the latency of transactions on the server, which
might affect client applications. Also, on highly concurrent
workloads, it is possible for the delay to increase
contention and therefore reduce throughput. Typically, the
benefits of setting a delay outweigh the drawbacks, but
tuning should always be carried out to determine the optimal
setting.
binlog_group_commit_sync_no_delay_count
Property | Value |
---|---|
Command-Line Format | --binlog-group-commit-sync-no-delay-count=# |
System Variable | binlog_group_commit_sync_no_delay_count |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 1000000 |
The maximum number of transactions to wait for before
aborting the current delay as specified by
binlog_group_commit_sync_delay
.
If
binlog_group_commit_sync_delay
is set to 0, then this option has no effect.
Property | Value |
---|---|
Command-Line Format | --binlog-max-flush-queue-time=# |
Deprecated | Yes |
System Variable | binlog_max_flush_queue_time |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 100000 |
binlog_max_flush_queue_time
is
deprecated, and is marked for eventual removal in a future
MySQL release. Formerly, this system variable controlled the
time in microseconds to continue reading transactions from
the flush queue before proceeding with group commit. It no
longer has any effect.
Property | Value |
---|---|
Command-Line Format | --binlog-order-commits[={OFF|ON}] |
System Variable | binlog_order_commits |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
When this variable is enabled on a replication master (which is the default), transaction commit instructions issued to storage engines are serialized on a single thread, so that transactions are always committed in the same order as they are written to the binary log. Disabling this variable permits transaction commit instructions to be issued using multiple threads. Used in combination with binary log group commit, this prevents the commit rate of a single transaction being a bottleneck to throughput, and might therefore produce a performance improvement.
Transactions are written to the binary log at the point when
all the storage engines involved have confirmed that the
transaction is prepared to commit. The binary log group
commit logic then commits a group of transactions after
their binary log write has taken place. When
binlog_order_commits
is
disabled, because multiple threads are used for this
process, transactions in a commit group might be committed
in a different order from their order in the binary log.
(Transactions from a single client always commit in
chronological order.) In many cases this does not matter, as
operations carried out in separate transactions should
produce consistent results, and if that is not the case, a
single transaction ought to be used instead.
If you want to ensure that the transaction history on the
master and on a multithreaded replication slave remains
identical, set
slave_preserve_commit_order=1
on the replication slave.
binlog_rotate_encryption_master_key_at_startup
Property | Value |
---|---|
Command-Line Format | --binlog-rotate-encryption-master-key-at-startup[={OFF|ON}] |
Introduced | 8.0.14 |
System Variable | binlog_rotate_encryption_master_key_at_startup |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Specifies whether or not the binary log master key is
rotated at server startup. The binary log master key is the
binary log encryption key that is used to encrypt file
passwords for the binary log files and relay log files on
the server. When a server is started for the first time with
binary log encryption enabled
(binlog_encryption=ON
), a
new binary log encryption key is generated and used as the
binary log master key. If the
binlog_rotate_encryption_master_key_at_startup
system variable is also set to ON
,
whenever the server is restarted, a further binary log
encryption key is generated and used as the binary log
master key for all subsequent binary log files and relay log
files. If the
binlog_rotate_encryption_master_key_at_startup
system variable is set to OFF
, which is
the default, the existing binary log master key is used
again after the server restarts. For more information on
binary log encryption keys and the binary log master key,
see Section 17.3.2, “Encrypting Binary Log Files and Relay Log Files”.
Property | Value |
---|---|
Command-Line Format | --binlog-row-event-max-size=# |
System Variable (≥ 8.0.14) | binlog_row_event_max_size |
Scope (≥ 8.0.14) | Global |
Dynamic (≥ 8.0.14) | No |
SET_VAR Hint Applies (≥ 8.0.14) |
No |
Type | Integer |
Default Value | 8192 |
Minimum Value | 256 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-based binary log event, in bytes. Where possible, rows stored in the binary log are grouped into events with a size not exceeding the value of this setting. If an event cannot be split, the maximum size can be exceeded. The value must be (or else gets rounded down to) a multiple of 256. The default is 8192 bytes.
This global system variable is read-only and can be set only
at server startup. Its value can therefore only be modified
by using the PERSIST_ONLY
keyword or the
@@persist_only
qualifier with the
SET
statement.
Property | Value |
---|---|
Command-Line Format | --binlog-row-image=image_type |
System Variable | binlog_row_image |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | full |
Valid Values |
|
For MySQL row-based replication, this variable determines how row images are written to the binary log.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
In MySQL row-based replication, each row change event contains two images, a “before” image whose columns are matched against when searching for the row to be updated, and an “after” image containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and after images. However, it is not strictly necessary to include every column in both images, and we can often save disk, memory, and network usage by logging only those columns which are actually required.
When deleting a row, only the before image is logged, since there are no changed values to propagate following the deletion. When inserting a row, only the after image is logged, since there is no existing row to be matched. Only when updating a row are both the before and after images required, and both written to the binary log.
For the before image, it is necessary only that the minimum
set of columns required to uniquely identify rows is logged.
If the table containing the row has a primary key, then only
the primary key column or columns are written to the binary
log. Otherwise, if the table has a unique key all of whose
columns are NOT NULL
, then only the
columns in the unique key need be logged. (If the table has
neither a primary key nor a unique key without any
NULL
columns, then all columns must be
used in the before image, and logged.) In the after image,
it is necessary to log only the columns which have actually
changed.
You can cause the server to log full or minimal rows using
the binlog_row_image
system variable.
This variable actually takes one of three possible values,
as shown in the following list:
full
: Log all columns in both the
before image and the after image.
minimal
: Log only those columns in
the before image that are required to identify the row
to be changed; log only those columns in the after image
where a value was specified by the SQL statement, or
generated by auto-increment.
noblob
: Log all columns (same as
full
), except for
BLOB
and
TEXT
columns that are not
required to identify rows, or that have not changed.
This variable is not supported by NDB Cluster; setting it
has no effect on the logging of
NDB
tables.
The default value is full
.
When using minimal
or
noblob
, deletes and updates are
guaranteed to work correctly for a given table if and only
if the following conditions are true for both the source and
destination tables:
All columns must be present and in the same order; each column must use the same data type as its counterpart in the other table.
The tables must have identical primary key definitions.
(In other words, the tables must be identical with the possible exception of indexes that are not part of the tables' primary keys.)
If these conditions are not met, it is possible that the primary key column values in the destination table may prove insufficient to provide a unique match for a delete or update. In this event, no warning or error is issued; the master and slave silently diverge, thus breaking consistency.
Setting this variable has no effect when the binary logging
format is STATEMENT
. When
binlog_format
is
MIXED
, the setting for
binlog_row_image
is applied to changes
that are logged using row-based format, but this setting has
no effect on changes logged as statements.
Setting binlog_row_image
on either the
global or session level does not cause an implicit commit;
this means that this variable can be changed while a
transaction is in progress without affecting the
transaction.
Property | Value |
---|---|
Command-Line Format | --binlog-row-metadata=metadata_type |
System Variable | binlog_row_metadata |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | MINIMAL |
Valid Values |
|
Configures the amount of table metadata added to the binary
log when using row-based logging. When set to
MINIMAL
, the default, only metadata
related to SIGNED
flags, column character
set and geometry types are logged. When set to
FULL
complete metadata for tables is
logged, such as column name,
ENUM
or
SET
string values, PRIMARY
KEY
information, and so on.
The extended metadata serves the following purposes:
Slaves use the metadata to transfer data when its table structure is different from the master's.
External software can use the metadata to decode row events and store the data into external databases, such as a data warehouse.
Property | Value |
---|---|
Command-Line Format | --binlog-row-value-options=# |
System Variable | binlog_row_value_options |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Set |
Default Value | '' |
Valid Values | PARTIAL_JSON |
When set to PARTIAL_JSON
, this enables
use of a space-efficient binary log format for updates that
modify only a small portion of a JSON document, which causes
row-based replication to write only the modified parts of
the JSON document to the after-image for the update in the
binary log (rather than writing the full document). This
works for an UPDATE
statement
which modifies a JSON column using any sequence of
JSON_SET()
,
JSON_REPLACE()
, and
JSON_REMOVE()
. If the
modification requires more space than the full document, or
if the server is unable to generate a partial update, the
full document is used instead.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
PARTIAL_JSON
is the only supported value;
to unset binlog_row_value_options
, set
its value to the empty string.
binlog_row_value_options=PARTIAL_JSON
takes effect only when binary logging is enabled and
binlog_format
is set to
ROW
or MIXED
.
Statement-based replication always logs
only the modified parts of the JSON document, regardless of
any value set for
binlog_row_value_options
. To maximize the
amount of space saved, use
binlog_row_image=NOBLOB
or
binlog_row_image=MINIMAL
together with
this option. binlog_row_image=FULL
saves
less space than either of these, since the full JSON
document is stored in the before-image, and the partial
update is stored only in the after-image.
mysqlbinlog output includes partial JSON
updates in the form of events encoded as base-64 strings
using BINLOG
statements. If
the --verbose
option is
specified, mysqlbinlog displays the
partial JSON updates as readable JSON using pseudo-SQL
statements.
MySQL Replication generates an error if a modification cannot be applied to the JSON document on the slave. This includes a failure to find the path. Be aware that, even with this and other safety checks, if a JSON document on a slave has diverged from that on the master and a partial update is applied, it remains theoretically possible to produce a valid but unexpected JSON document on the slave.
Property | Value |
---|---|
Command-Line Format | --binlog-rows-query-log-events[={OFF|ON}] |
System Variable | binlog_rows_query_log_events |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
This system variable affects row-based logging only. When enabled, it causes the server to write informational log events such as row query log events into its binary log. This information can be used for debugging and related purposes, such as obtaining the original query issued on the master when it cannot be reconstructed from the row updates.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
These informational events are normally ignored by MySQL
programs reading the binary log and so cause no issues when
replicating or restoring from backup. To view them, increase
the verbosity level by using mysqlbinlog's
--verbose
option twice,
either as -vv
or --verbose
--verbose
.
Property | Value |
---|---|
Command-Line Format | --binlog-stmt-cache-size=# |
System Variable | binlog_stmt_cache_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 32768 |
Minimum Value | 4096 |
Maximum Value (64-bit platforms) | 18446744073709551615 |
Maximum Value (32-bit platforms) | 4294967295 |
The size of the memory buffer for the binary log to hold
nontransactional statements issued during a transaction.
When binary logging is enabled on the server (with the
log_bin
system variable set
to ON), separate binary log transaction and statement caches
are allocated for each client if the server supports any
transactional storage engines. If the data for the
nontransactional statements used in the transaction exceeds
the space in the memory buffer, the excess data is stored in
a temporary file. When binary log encryption is active on
the server, the memory buffer is not encrypted, but (from
MySQL 8.0.17) any temporary file used to hold the binary log
cache is encrypted. After each transaction is committed, the
binary log statement cache is reset by clearing the memory
buffer and truncating the temporary file if used.
If you often use large nontransactional statements during
transactions, you can increase this cache size to get better
performance by reducing or eliminating the need to write to
temporary files. The
Binlog_stmt_cache_use
and
Binlog_stmt_cache_disk_use
status variables can be useful for tuning the size of this
variable. See Section 5.4.4, “The Binary Log”.
The binlog_cache_size
system variable sets the size for the transaction cache.
binlog_transaction_compression
Property | Value |
---|---|
Command-Line Format | --binlog-transaction-compression[={OFF|ON}] |
Introduced | 8.0.20 |
System Variable | binlog_transaction_compression |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Enables compression for transactions that are written to
binary log files on this server. OFF
is
the default. Use the
binlog_transaction_compression_level_zstd
system variable to set the level for the zstd algorithm that
is used for compression.
When binary log transaction compression is enabled,
transaction payloads are compressed and then written to the
binary log file as a single event
(Transaction_payload_event
). Compressed
transaction payloads remain in a compressed state while they
are sent in the replication stream to replication slaves,
other Group Replication group members, or clients such as
mysqlbinlog, and are written to the relay
log still in their compressed state. Binary log transaction
compression therefore saves storage space both on the
originator of the transaction and on the recipient (and for
their backups), and saves network bandwidth when the
transactions are sent between server instances.
For binlog_transaction_compression=ON
to
have a direct effect, binary logging must be enabled on the
server. When a MySQL server instance has no binary log, if
it is at a release from MySQL 8.0.20, it can receive,
handle, and display compressed transaction payloads
regardless of its value for
binlog_transaction_compression
.
Compressed transaction payloads received by such server
instances are written in their compressed state to the relay
log, so they benefit indirectly from compression carried out
by other servers in the replication topology.
This system variable cannot be changed within the context of a transaction. Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
For more information on binary log transaction compression, including details of what events are and are not compressed, and changes in behavior when transaction compression is in use, see Section 5.4.4.5, “Binary Log Transaction Compression”.
binlog_transaction_compression_level_zstd
Property | Value |
---|---|
Command-Line Format | --binlog-transaction-compression-level-zstd=# |
Introduced | 8.0.20 |
System Variable | binlog_transaction_compression_level_zstd |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 3 |
Minimum Value | 1 |
Maximum Value | 22 |
Sets the compression level for binary log transaction
compression on this server, which is enabled by the
binlog_transaction_compression
system variable. The value is an integer that determines the
compression effort, from 1 (the lowest effort) to 22 (the
highest effort). If you do not specify this system variable,
the compression level is set to 3.
As the compression level increases, the data compression ratio increases, which reduces the storage space and network bandwidth required for the transaction payload. However, the effort required for data compression also increases, taking time and CPU and memory resources on the originating server. Increases in the compression effort do not have a linear relationship to increases in the data compression ratio.
This system variable cannot be changed within the context of a transaction. Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
binlog_transaction_dependency_tracking
Property | Value |
---|---|
Command-Line Format | --binlog-transaction-dependency-tracking=value |
System Variable | binlog_transaction_dependency_tracking |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | COMMIT_ORDER |
Valid Values |
|
For a replication master that has multithreaded slaves
(replication slaves on which
slave_parallel_workers
is
set to a value greater than 0),
binlog_transaction_dependency_tracking
specifies the source of dependency information that the
master records in the binary log to help slaves determine
which transactions can be executed in parallel. The possible
values are:
COMMIT_ORDER
: Dependency information
is generated from the master's commit timestamps.
This is the default.
WRITESET
: Dependency information is
generated from the master's write set, and any
transactions that write different tuples can be
parallelized.
WRITESET_SESSION
: Dependency
information is generated from the master's write
set, and any transactions that write different tuples
can be parallelized, with the exception that no two
updates from the same session can be reordered.
WRITESET
and
WRITESET_SESSION
modes do not deliver any
transaction dependencies that are less optimized than those
that would have been returned in
COMMIT_ORDER
mode. When you set
WRITESET
or
WRITESET_SESSION
as the value, the master
uses COMMIT_ORDER
mode for any
transactions that have empty or partial write sets, for any
transactions that update tables without primary or unique
keys, and for any transactions that update parent tables in
a foreign key relationship.
To set WRITESET
or
WRITESET_SESSION
as the value for
binlog_transaction_dependency_tracking
,
transaction_write_set_extraction
must be set to specify an algorithm (not set to
OFF
). The default in MySQL 8.0 is that
transaction_write_set_extraction
is set to XXHASH64
. The value that you
select for
transaction_write_set_extraction
cannot be changed again while the value of
binlog_transaction_dependency_tracking
remains as WRITESET
or
WRITESET_SESSION
.
The number of row hashes to be kept and checked for the
latest transaction to have changed a given row is determined
by the value of
binlog_transaction_dependency_history_size
.
For Group Replication, setting
binlog_transaction_dependency_tracking=WRITESET_SESSION
can improve performance for a group member, depending on the
group's workload. Group Replication carries out its own
parallelization after certification when applying
transactions from the relay log, independently of the value
set for
binlog_transaction_dependency_tracking
.
However, the value of
binlog_transaction_dependency_tracking
does affect how transactions are written to the binary logs
on Group Replication members. The dependency information in
those logs is used to assist the process of state transfer
from a donor's binary log for distributed recovery, which
takes place whenever a member joins or rejoins the group.
binlog_transaction_dependency_history_size
Property | Value |
---|---|
Command-Line Format | --binlog-transaction-dependency-history-size=# |
System Variable | binlog_transaction_dependency_history_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 25000 |
Minimum Value | 1 |
Maximum Value | 1000000 |
Sets an upper limit on the number of row hashes which are kept in memory and used for looking up the transaction that last modified a given row. Once this number of hashes has been reached, the history is purged.
Property | Value |
---|---|
Command-Line Format | --expire-logs-days=# |
Deprecated | Yes |
System Variable | expire_logs_days |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 0 |
Minimum Value | 0 |
Maximum Value | 99 |
Specifies the number of days before automatic removal of
binary log files.
expire_logs_days
is
deprecated, and will be removed in a future release.
Instead, use
binlog_expire_logs_seconds
,
which sets the binary log expiration period in seconds. If
you do not set a value for either system variable, the
default expiration period is 30 days. Possible removals
happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in
Section 5.4, “MySQL Server Logs”.
Any non-zero value that you specify for
expire_logs_days
is ignored
if
binlog_expire_logs_seconds
is also specified, and the value of
binlog_expire_logs_seconds
is used instead as the binary log expiration period. A
warning message is issued in this situation. A non-zero
value for expire_logs_days
is only applied as the binary log expiration period if
binlog_expire_logs_seconds
is not specified or is specified as 0.
To disable automatic purging of the binary log, specify a
value of 0 explicitly for
binlog_expire_logs_seconds
,
and do not specify a value for
expire_logs_days
. For
compatibility with earlier releases, automatic purging is
also disabled if you specify a value of 0 explicitly for
expire_logs_days
and do not
specify a value for
binlog_expire_logs_seconds
.
In that case, the default for
binlog_expire_logs_seconds
is not applied.
To remove binary log files manually, use the
PURGE BINARY LOGS
statement.
See Section 13.4.1.1, “PURGE BINARY LOGS Statement”.
Shows the status of binary logging on the server, either
enabled (ON
) or disabled
(OFF
). With binary logging enabled, the
server logs all statements that change data to the binary
log, which is used for backup and replication.
ON
means that the binary log is
available, OFF
means that it is not in
use. The --log-bin
option can
be used to specify a base name and location for the binary
log.
In earlier MySQL versions, binary logging was disabled by
default, and was enabled if you specified the
--log-bin
option. From MySQL 8.0, binary
logging is enabled by default, with the
log_bin
system variable set to
ON
, whether or not you specify the
--log-bin
option. The exception is if you
use mysqld to initialize the data
directory manually by invoking it with the
--initialize
or
--initialize-insecure
option, when binary
logging is disabled by default. It is possible to enable
binary logging in this case by specifying the
--log-bin
option.
If the
--skip-log-bin
or
--disable-log-bin
option is specified at startup, binary logging is disabled,
with the log_bin
system variable set to
OFF
. If either of these options is
specified and --log-bin
is also specified,
the option specified later takes precedence.
For information on the format and management of the binary log, see Section 5.4.4, “The Binary Log”.
Property | Value |
---|---|
System Variable | log_bin_basename |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
Holds the base name and path for the binary log files, which
can be set with the --log-bin
server option. In MySQL 8.0, if the
--log-bin
option is not supplied, the
default base name is binlog
. For
compatibility with MySQL 5.7, if the
--log-bin
option is supplied with no string
or with an empty string, the default base name is
,
using the name of the host machine. The default location is
the data directory.
host_name
-bin
Property | Value |
---|---|
Command-Line Format | --log-bin-index=file_name |
System Variable | log_bin_index |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | File name |
Holds the base name and path for the binary log index file,
which can be set with the
--log-bin-index
server
option.
log_bin_trust_function_creators
Property | Value |
---|---|
Command-Line Format | --log-bin-trust-function-creators[={OFF|ON}] |
System Variable | log_bin_trust_function_creators |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
This variable applies when binary logging is enabled. It
controls whether stored function creators can be trusted not
to create stored functions that will cause unsafe events to
be written to the binary log. If set to 0 (the default),
users are not permitted to create or alter stored functions
unless they have the SUPER
privilege in addition to the CREATE
ROUTINE
or ALTER
ROUTINE
privilege. A setting of 0 also enforces
the restriction that a function must be declared with the
DETERMINISTIC
characteristic, or with the
READS SQL DATA
or NO
SQL
characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function
creation. This variable also applies to trigger creation.
See Section 24.7, “Stored Program Binary Logging”.
Property | Value |
---|---|
Command-Line Format | --log-bin-use-v1-row-events[={OFF|ON}] |
Deprecated | 8.0.18 |
System Variable | log_bin_use_v1_row_events |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
This read-only system variable is deprecated. Setting the
system variable to ON
at server startup
enabled row-based replication with slaves running MySQL
Server 5.5 and earlier by writing the binary log using
Version 1 binary log row events, instead of Version 2 binary
log row events which are the default as of MySQL 5.6.
Property | Value |
---|---|
Command-Line Format | --log-slave-updates[={OFF|ON}] |
System Variable | log_slave_updates |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
Whether updates received by a slave server from a master server should be logged to the slave's own binary log.
Enabling this variable causes the slave to write the updates
that are received from a master server and performed by the
slave's SQL thread to the slave's own binary log. Binary
logging, which is controlled by the
--log-bin
option and is
enabled by default, must also be enabled on the slave for
updates to be logged. See
Section 17.1.6, “Replication and Binary Logging Options and Variables”.
log_slave_updates
is
enabled by default, unless you specify
--skip-log-bin
to disable binary logging, in which case MySQL also disables
slave update logging by default. If you need to disable
slave update logging when binary logging is enabled, specify
--log-slave-updates=OFF
at
slave server startup.
Enabling log_slave_updates
enables replication servers to be chained. For example, you
might want to set up replication servers using this
arrangement:
A -> B -> C
Here, A
serves as the master for the
slave B
, and B
serves
as the master for the slave C
. For this
to work, B
must be both a master
and a slave. With binary logging
enabled and
log_slave_updates
enabled,
which are the default settings, updates received from
A
are logged by B
to
its binary log, and can therefore be passed on to
C
.
log_statements_unsafe_for_binlog
Property | Value |
---|---|
Command-Line Format | --log-statements-unsafe-for-binlog[={OFF|ON}] |
System Variable | log_statements_unsafe_for_binlog |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
If error 1592 is encountered, controls whether the generated warnings are added to the error log or not.
Property | Value |
---|---|
Command-Line Format | --master-verify-checksum[={OFF|ON}] |
System Variable | master_verify_checksum |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | OFF |
Enabling this variable causes the master to verify events
read from the binary log by examining checksums, and to stop
with an error in the event of a mismatch.
master_verify_checksum
is
disabled by default; in this case, the master uses the event
length from the binary log to verify events, so that only
complete events are read from the binary log.
Property | Value |
---|---|
Command-Line Format | --max-binlog-cache-size=# |
System Variable | max_binlog_cache_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 18446744073709551615 |
Minimum Value | 4096 |
Maximum Value | 18446744073709551615 |
If a transaction requires more than this many bytes of memory, the server generates a Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage error. The minimum value is 4096. The maximum possible value is 16EiB (exbibytes). The maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with binary log positions greater than 4GB.
max_binlog_cache_size
sets the size for
the transaction cache only; the upper limit for the
statement cache is governed by the
max_binlog_stmt_cache_size
system variable.
The visibility to sessions of
max_binlog_cache_size
matches that of the
binlog_cache_size
system
variable; in other words, changing its value affects only
new sessions that are started after the value is changed.
Property | Value |
---|---|
Command-Line Format | --max-binlog-size=# |
System Variable | max_binlog_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1073741824 |
Minimum Value | 4096 |
Maximum Value | 1073741824 |
If a write to the binary log causes the current log file
size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens
the next one). The minimum value is 4096 bytes. The maximum
and default value is 1GB. Encrypted binary log files have an
additional 512-byte header, which is included in
max_binlog_size
.
A transaction is written in one chunk to the binary log, so
it is never split between several binary logs. Therefore, if
you have big transactions, you might see binary log files
larger than
max_binlog_size
.
If max_relay_log_size
is 0,
the value of
max_binlog_size
applies to
relay logs as well.
With GTIDs in use on the server, when
max_binlog_size
is reached,
if the system table mysql.gtid_executed
cannot be accessed to write the GTIDs from the current
binary log file, the binary log cannot be rotated. In this
situation, the server responds according to its
binlog_error_action
setting. If IGNORE_ERROR
is set, an error
is logged on the server and binary logging is halted, or if
ABORT_SERVER
is set, the server shuts
down.
Property | Value |
---|---|
Command-Line Format | --max-binlog-stmt-cache-size=# |
System Variable | max_binlog_stmt_cache_size |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 18446744073709547520 |
Minimum Value | 4096 |
Maximum Value | 18446744073709547520 |
If nontransactional statements within a transaction require more than this many bytes of memory, the server generates an error. The minimum value is 4096. The maximum and default values are 4GB on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.
max_binlog_stmt_cache_size
sets the size
for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the
max_binlog_cache_size
system variable.
Property | Value |
---|---|
System Variable | original_commit_timestamp |
Scope | Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Numeric |
For internal use by replication. When re-executing a transaction on a slave, this is set to the time when the transaction was committed on the original master, measured in microseconds since the epoch. This allows the original commit timestamp to be propagated throughout a replication topology.
Setting the session value of this system variable is a
restricted operation. The session user must have either the
REPLICATION_APPLIER
privilege
(see Section 17.3.3, “Replication Privilege Checks”), or
privileges sufficient to set restricted session variables
(see Section 5.1.9.1, “System Variable Privileges”). However,
note that the variable is not intended for users to set; it
is set automatically by the replication infrastructure.
Property | Value |
---|---|
System Variable | sql_log_bin |
Scope | Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
This variable controls whether logging to the binary log is
enabled for the current session (assuming that the binary
log itself is enabled). The default value is
ON
. To disable or enable binary logging
for the current session, set the session
sql_log_bin
variable to
OFF
or ON
.
Set this variable to OFF
for a session to
temporarily disable binary logging while making changes to
the master you do not want replicated to the slave.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
It is not possible to set the session value of
sql_log_bin
within a
transaction or subquery.
Setting this variable to OFF
prevents GTIDs from being assigned to transactions in the
binary log. If you are using GTIDs for
replication, this means that even when binary logging is
later enabled again, the GTIDs written into the log from
this point do not account for any transactions that occurred
in the meantime, so in effect those transactions are lost.
Property | Value |
---|---|
Command-Line Format | --sync-binlog=# |
System Variable | sync_binlog |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1 |
Minimum Value | 0 |
Maximum Value | 4294967295 |
Controls how often the MySQL server synchronizes the binary log to disk.
sync_binlog=0
: Disables
synchronization of the binary log to disk by the MySQL
server. Instead, the MySQL server relies on the
operating system to flush the binary log to disk from
time to time as it does for any other file. This setting
provides the best performance, but in the event of a
power failure or operating system crash, it is possible
that the server has committed transactions that have not
been synchronized to the binary log.
sync_binlog=1
: Enables
synchronization of the binary log to disk before
transactions are committed. This is the safest setting
but can have a negative impact on performance due to the
increased number of disk writes. In the event of a power
failure or operating system crash, transactions that are
missing from the binary log are only in a prepared
state. This permits the automatic recovery routine to
roll back the transactions, which guarantees that no
transaction is lost from the binary log.
sync_binlog=
,
where N
N
is a value other than
0 or 1: The binary log is synchronized to disk after
N
binary log commit groups have been
collected. In the event of a power failure or operating
system crash, it is possible that the server has
committed transactions that have not been flushed to the
binary log. This setting can have a negative impact on
performance due to the increased number of disk writes.
A higher value improves performance, but with an
increased risk of data loss.
For the greatest possible durability and consistency in a
replication setup that uses InnoDB
with
transactions, use these settings:
Many operating systems and some disk hardware fool the
flush-to-disk operation. They may tell
mysqld that the flush has taken place,
even though it has not. In this case, the durability of
transactions is not guaranteed even with the recommended
settings, and in the worst case, a power outage can
corrupt InnoDB
data. Using a
battery-backed disk cache in the SCSI disk controller or
in the disk itself speeds up file flushes, and makes the
operation safer. You can also try to disable the caching
of disk writes in hardware caches.
transaction_write_set_extraction
Property | Value |
---|---|
Command-Line Format | --transaction-write-set-extraction[=value] |
System Variable | transaction_write_set_extraction |
Scope | Global, Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | XXHASH64 |
Default Value | OFF |
Valid Values |
|
For a replication master that has multithreaded slaves
(replication slaves on which
slave_parallel_workers
is
set to a value greater than 0), where
binlog_transaction_dependency_tracking
is set to WRITESET
or
WRITESET_SESSION
to generate dependency
information from the master's write set,
transaction_write_set_extraction
specifies the algorithm used to hash the writes extracted
during a transaction.
binlog_format
must be set
to ROW
to change the value of this system
variable.
When WRITESET
or
WRITESET_SESSION
is set as the value for
binlog_transaction_dependency_tracking
,
transaction_write_set_extraction
must be set to specify an algorithm (not set to
OFF
). The default in MySQL 8.0 is that
transaction_write_set_extraction
is set to XXHASH64
. While the current
value of
binlog_transaction_dependency_tracking
is WRITESET
or
WRITESET_SESSION
, you cannot change the
value of
transaction_write_set_extraction
.
For Group Replication,
transaction_write_set_extraction
must be set to XXHASH64
. The process of
extracting the writes from a transaction is used in Group
Replication for conflict detection and certification on all
group members. See
Section 18.9.1, “Group Replication Requirements”.
As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
The MySQL Server system variables described in this section are used to monitor and control Global Transaction Identifiers (GTIDs). For additional information, see Section 17.1.3, “Replication with Global Transaction Identifiers”.
Property | Value |
---|---|
Command-Line Format | --binlog-gtid-simple-recovery[={OFF|ON}] |
System Variable | binlog_gtid_simple_recovery |
Scope | Global |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | Boolean |
Default Value | ON |
This variable controls how binary log files are iterated during the search for GTIDs when MySQL starts or restarts.
When
binlog_gtid_simple_recovery=TRUE
,
which is the default in MySQL 8.0, the values of
gtid_executed
and
gtid_purged
are computed at
startup based on the values of
Previous_gtids_log_event
in the most recent
and oldest binary log files. For a description of the
computation, see
The gtid_purged
System Variable. This setting
accesses only two binary log files during server restart. If
all binary logs on the server were generated using MySQL 5.7.8
or later,
binlog_gtid_simple_recovery=TRUE
can always safely be used.
If any binary logs from MySQL 5.7.7 or older are present on
the server (for example, following an upgrade of an older
server to MySQL 8.0), with
binlog_gtid_simple_recovery=TRUE
,
gtid_executed
and
gtid_purged
might be
initialized incorrectly in the following two situations:
The newest binary log was generated by MySQL 5.7.5 or
earlier, and gtid_mode
was ON
for some binary logs but
OFF
for the newest binary log.
A SET @@GLOBAL.gtid_purged
statement
was issued on MySQL 5.7.7 or earlier, and the binary log
that was active at the time of the SET
@@GLOBAL.gtid_purged
statement has not yet been
purged.
If an incorrect GTID set is computed in either situation, it
will remain incorrect even if the server is later restarted
with
binlog_gtid_simple_recovery=FALSE
.
If either of these situations apply or might apply on the
server, set
binlog_gtid_simple_recovery=FALSE
before starting or restarting the server.
When
binlog_gtid_simple_recovery=FALSE
is set, the method of computing
gtid_executed
and
gtid_purged
as described in
The gtid_purged
System Variable is changed to
iterate the binary log files as follows:
Instead of using the value of
Previous_gtids_log_event
and GTID log
events from the newest binary log file, the computation
for gtid_executed
iterates from the newest binary log file, and uses the
value of Previous_gtids_log_event
and
any GTID log events from the first binary log file where
it finds a Previous_gtids_log_event
value. If the server's most recent binary log files do not
have GTID log events, for example if
gtid_mode=ON
was used but
the server was later changed to
gtid_mode=OFF
, this
process can take a long time.
Instead of using the value of
Previous_gtids_log_event
from the
oldest binary log file, the computation for
gtid_purged
iterates from
the oldest binary log file, and uses the value of
Previous_gtids_log_event
from the first
binary log file where it finds either a nonempty
Previous_gtids_log_event
value, or at
least one GTID log event (indicating that the use of GTIDs
starts at that point). If the server's older binary log
files do not have GTID log events, for example if
gtid_mode=ON
was only set
recently on the server, this process can take a long time.
Property | Value |
---|---|
Command-Line Format | --enforce-gtid-consistency[=value] |
System Variable | enforce_gtid_consistency |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | OFF |
Valid Values |
|
Depending on the value of this variable, the server enforces
GTID consistency by allowing execution of only statements that
can be safely logged using a GTID. You
must set this variable to
ON
before enabling GTID based replication.
The values that
enforce_gtid_consistency
can
be configured to are:
OFF
: all transactions are allowed to
violate GTID consistency.
ON
: no transaction is allowed to
violate GTID consistency.
WARN
: all transactions are allowed to
violate GTID consistency, but a warning is generated in
this case.
Only statements that can be logged using GTID safe statements
can be logged when
enforce_gtid_consistency
is
set to ON
, so the operations listed here
cannot be used with this option:
CREATE
TABLE ... SELECT
statements
CREATE
TEMPORARY TABLE
or
DROP TEMPORARY
TABLE
statements inside transactions
Transactions or statements that update both transactional and nontransactional tables. There is an exception that nontransactional DML is allowed in the same transaction or in the same statement as transactional DML, if all nontransactional tables are temporary.
--enforce-gtid-consistency
only
takes effect if binary logging takes place for a statement. If
binary logging is disabled on the server, or if statements are
not written to the binary log because they are removed by a
filter, GTID consistency is not checked or enforced for the
statements that are not logged.
For more information, see Section 17.1.3.6, “Restrictions on Replication with GTIDs”.
Prior to MySQL 5.7 and in early releases in that release
series, the boolean
enforce_gtid_consistency
defaulted to OFF
. To maintain compatibility
with these earlier releases, the enumeration defaults to
OFF
, and setting
--enforce-gtid-consistency
without a value is interpreted as setting the value to
ON
. The variable also has multiple textual
aliases for the values: 0=OFF=FALSE
,
1=ON=TRUE
,2=WARN
. This
differs from other enumeration types but maintains
compatibility with the boolean type used in previous releases.
These changes impact on what is returned by the variable.
Using SELECT @@ENFORCE_GTID_CONSISTENCY
,
SHOW VARIABLES LIKE
'ENFORCE_GTID_CONSISTENCY'
, and SELECT *
FROM INFORMATION_SCHEMA.VARIABLES WHERE 'VARIABLE_NAME' =
'ENFORCE_GTID_CONSISTENCY'
, all return the textual
form, not the numeric form. This is an incompatible change,
since @@ENFORCE_GTID_CONSISTENCY
returns
the numeric form for booleans but returns the textual form for
SHOW
and the Information Schema.
Property | Value |
---|---|
System Variable | gtid_executed |
System Variable | gtid_executed |
Scope | Global |
Scope | Global, Session |
Dynamic | No |
Dynamic | No |
SET_VAR Hint Applies |
No |
SET_VAR Hint Applies |
No |
Type | String |
When used with global scope, this variable contains a
representation of the set of all transactions executed on the
server and GTIDs that have been set by a
SET
gtid_purged
statement. This
is the same as the value of the
Executed_Gtid_Set
column in the output of
SHOW MASTER STATUS
and
SHOW SLAVE STATUS
. The value of
this variable is a GTID set, see
GTID Sets for
more information.
When the server starts,
@@GLOBAL.gtid_executed
is initialized. See
binlog_gtid_simple_recovery
for more information on how binary logs are iterated to
populate gtid_executed
. GTIDs
are then added to the set as transactions are executed, or if
any
SET
gtid_purged
statement is
executed.
The set of transactions that can be found in the binary logs
at any given time is equal to
GTID_SUBTRACT(@@GLOBAL.gtid_executed,
@@GLOBAL.gtid_purged)
; that is, to all transactions
in the binary log that have not yet been purged.
Issuing RESET MASTER
causes the
global value (but not the session value) of this variable to
be reset to an empty string. GTIDs are not otherwise removed
from this set other than when the set is cleared due to
RESET MASTER
.
In some older releases, this variable could also be used with session scope, where it contained a representation of the set of transactions that are written to the cache in the current session. The session scope is now deprecated.
gtid_executed_compression_period
Property | Value |
---|---|
Command-Line Format | --gtid-executed-compression-period=# |
System Variable | gtid_executed_compression_period |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Integer |
Default Value | 1000 |
Minimum Value | 0 |
Maximum Value | 4294967295 |
Compress the mysql.gtid_executed
table each
time this many transactions have been processed. A setting of
0 means that this table is not compressed. Since no
compression of the table occurs when using the binary log,
setting the value of the variable has no effect unless binary
logging is disabled.
See mysql.gtid_executed Table Compression, for more information.
Property | Value |
---|---|
Command-Line Format | --gtid-mode=MODE |
System Variable | gtid_mode |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | OFF |
Valid Values |
|
Controls whether GTID based logging is enabled and what type
of transactions the logs can contain. You must have privileges
sufficient to set global system variables. See
Section 5.1.9.1, “System Variable Privileges”.
enforce_gtid_consistency
must
be true before you can set
gtid_mode=ON
. Before
modifying this variable, see
Section 17.1.5, “Changing Replication Modes on Online Servers”.
Logged transactions can be either anonymous or use GTIDs. Anonymous transactions rely on binary log file and position to identify specific transactions. GTID transactions have a unique identifier that is used to refer to transactions. The different modes are:
OFF
: Both new and replicated
transactions must be anonymous.
OFF_PERMISSIVE
: New transactions are
anonymous. Replicated transactions can be either anonymous
or GTID transactions.
ON_PERMISSIVE
: New transactions are
GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.
ON
: Both new and replicated
transactions must be GTID transactions.
Changes from one value to another can only be one step at a
time. For example, if
gtid_mode
is currently set to
OFF_PERMISSIVE
, it is possible to change to
OFF
or ON_PERMISSIVE
but
not to ON
.
The values of gtid_purged
and
gtid_executed
are persistent
regardless of the value of
gtid_mode
. Therefore even
after changing the value of
gtid_mode
, these variables
contain the correct values.
Property | Value |
---|---|
System Variable | gtid_next |
Scope | Session |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | Enumeration |
Default Value | AUTOMATIC |
Valid Values |
|
This variable is used to specify whether and how the next GTID is obtained.
Setting the session value of this system variable is a
restricted operation. The session user must have either the
REPLICATION_APPLIER
privilege
(see Section 17.3.3, “Replication Privilege Checks”), or
privileges sufficient to set restricted session variables (see
Section 5.1.9.1, “System Variable Privileges”).
gtid_next
can take any of the following
values:
AUTOMATIC
: Use the next
automatically-generated global transaction ID.
ANONYMOUS
: Transactions do not have
global identifiers, and are identified by file and
position only.
A global transaction ID in
UUID
:NUMBER
format.
Exactly which of the above options are valid depends on the
setting of gtid_mode
, see
Section 17.1.5.1, “Replication Mode Concepts” for
more information. Setting this variable has no effect if
gtid_mode
is
OFF
.
After this variable has been set to
UUID
:NUMBER
,
and a transaction has been committed or rolled back, an
explicit SET GTID_NEXT
statement must again
be issued before any other statement.
DROP TABLE
or
DROP TEMPORARY
TABLE
fails with an explicit error when used on a
combination of nontemporary tables with temporary tables, or
of temporary tables using transactional storage engines with
temporary tables using nontransactional storage engines.
Property | Value |
---|---|
System Variable | gtid_owned |
Scope | Global, Session |
Dynamic | No |
SET_VAR Hint Applies |
No |
Type | String |
This read-only variable is primarily for internal use. Its contents depend on its scope.
When used with global scope,
gtid_owned
holds a list
of all the GTIDs that are currently in use on the server,
with the IDs of the threads that own them. This variable
is mainly useful for a multi-threaded replication slave to
check whether a transaction is already being applied on
another thread. An applier thread takes ownership of a
transaction's GTID all the time it is processing the
transaction, so @@global.gtid_owned
shows the GTID and owner for the duration of processing.
When a transaction has been committed (or rolled back),
the applier thread releases ownership of the GTID.
When used with session scope,
gtid_owned
holds a single
GTID that is currently in use by and owned by this
session. This variable is mainly useful for testing and
debugging the use of GTIDs when the client has explicitly
assigned a GTID for the transaction by setting
gtid_next
. In this case,
@@session.gtid_owned
displays the GTID
all the time the client is processing the transaction,
until the transaction has been committed (or rolled back).
When the client has finished processing the transaction,
the variable is cleared. If
gtid_next=AUTOMATIC
is
used for the session,
gtid_owned
is only
populated briefly during the execution of the commit
statement for the transaction, so it cannot be observed
from the session concerned, although it will be listed if
@@global.gtid_owned
is read at the
right point. If you have a requirement to track the GTIDs
that are handled by a client in a session, you can enable
the session state tracker controlled by the
session_track_gtids
system variable.
Property | Value |
---|---|
System Variable | gtid_purged |
Scope | Global |
Dynamic | Yes |
SET_VAR Hint Applies |
No |
Type | String |
The global value of the
gtid_purged
system variable
(@@GLOBAL.gtid_purged
) is a GTID set
consisting of the GTIDs of all the transactions that have been
committed on the server, but do not exist in any binary log
file on the server.
gtid_purged
is a subset of
gtid_executed
. The following
categories of GTIDs are in
gtid_purged
:
GTIDs of replicated transactions that were committed with binary logging disabled on the slave.
GTIDs of transactions that were written to a binary log file that has now been purged.
GTIDs that were added explicitly to the set by the
statement SET @@GLOBAL.gtid_purged
.
When the server starts, the global value of
gtid_purged
is initialized to
a set of GTIDs. For information on how this GTID set is
computed, see The gtid_purged
System Variable.
If binary logs from MySQL 5.7.7 or older are present on the
server, you might need to set
binlog_gtid_simple_recovery=FALSE
in the server's configuration file to produce the correct
computation. See the description for
binlog_gtid_simple_recovery
for details of the situations in which this setting is needed.
Issuing RESET MASTER
causes the
value of gtid_purged
to be
reset to an empty string.
You can set the value of
gtid_purged
in order to
record on the server that the transactions in a certain GTID
set have been applied, although they do not exist in any
binary log on the server. An example use case for this action
is when you are restoring a backup of one or more databases on
a server, but you do not have the relevant binary logs
containing the transactions on the server.
From MySQL 8.0, there are two ways to set the value of
gtid_purged
. You can either
replace the value of
gtid_purged
with your
specified GTID set, or you can append your specified GTID set
to the GTID set that is already held by
gtid_purged
. If the server
has no existing GTIDs, for example an empty server that you
are provisioning with a backup of an existing database, both
methods have the same result. If you are restoring a backup
that overlaps the transactions that are already on the server,
for example replacing a corrupted table with a partial dump
from the master made using mysqldump (which
includes the GTIDs of all the transactions on the server, even
though the dump is partial), use the first method of replacing
the value of gtid_purged
. If
you are restoring a backup that is disjoint from the
transactions that are already on the server, for example
provisioning a multi-source replication slave using dumps from
two different servers, use the second method of adding to the
value of gtid_purged
.
To replace the value of
gtid_purged
with your
specified GTID set, use the following statement:
SET @@GLOBAL.gtid_purged = 'gtid_set'
gtid_set
must be a superset of the
current value of
gtid_purged
, and must not
intersect with
gtid_subtract(gtid_executed,gtid_purged)
.
In other words, the new GTID set
must include any GTIDs
that were already in
gtid_purged
, and
must not include any
GTIDs in gtid_executed
that have not yet been purged. gtid_set
also cannot include any GTIDs that are in
@@global.gtid_owned
, that is, the GTIDs
for transactions that are currently being processed on the
server.
The result is that the global value of
gtid_purged
is set equal
to gtid_set
, and the value of
gtid_executed
becomes the
union of gtid_set
and the previous
value of gtid_executed
.
To append your specified GTID set to
gtid_purged
, use the
following statement with a plus sign (+) before the GTID
set:
SET @@GLOBAL.gtid_purged = '+gtid_set'
gtid_set
must
not intersect with the current value of
gtid_executed
. In other
words, the new GTID set must not include any GTIDs in
gtid_executed
, including
transactions that are already also in
gtid_purged
.
gtid_set
also cannot include any GTIDs
that are in @@global.gtid_owned
, that
is, the GTIDs for transactions that are currently being
processed on the server.
The result is that gtid_set
is added to
both gtid_executed
and
gtid_purged
.
If any binary logs from MySQL 5.7.7 or older are present on the
server (for example, following an upgrade of an older server to
MySQL 8.0), after issuing a SET
@@GLOBAL.gtid_purged
statement, you might need to set
binlog_gtid_simple_recovery=FALSE
in the server's configuration file before restarting the server,
otherwise gtid_purged
can be
computed incorrectly. See the description for
binlog_gtid_simple_recovery
for
details of the situations in which this setting is needed.
Once replication has been started it executes without requiring much regular administration. This section describes how to check the status of replication, how to pause a replication slave, and how to skip a failed transaction on a replication slave.
The most common task when managing a replication process is to ensure that replication is taking place and that there have been no errors between the slave and the master.
The SHOW SLAVE STATUS
statement,
which you must execute on each slave, provides information about
the configuration and status of the connection between the slave
server and the master server. From MySQL 5.7, the Performance
Schema has replication tables that provide this information in a
more accessible form. See
Section 26.12.11, “Performance Schema Replication Tables”.
The replication heartbeat information shown in the Performance
Schema replication tables lets you check that the replication
connection is active even if the master has not sent events to
the slave recently. The master sends a heartbeat signal to a
slave if there are no updates to, and no unsent events in, the
binary log for a longer period than the heartbeat interval. The
MASTER_HEARTBEAT_PERIOD
setting on the master
(set by the CHANGE MASTER TO
statement) specifies the frequency of the heartbeat, which
defaults to half of the connection timeout interval for the
slave (slave_net_timeout
). The
replication_connection_status
Performance Schema table shows when the most recent heartbeat
signal was received by a replication slave, and how many
heartbeat signals it has received.
If you are using the SHOW SLAVE
STATUS
statement to check on the status of an
individual slave, the statement provides the following
information:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: master1
Master_User: root
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: mysql-bin.000004
Read_Master_Log_Pos: 931
Relay_Log_File: slave1-relay-bin.000056
Relay_Log_Pos: 950
Relay_Master_Log_File: mysql-bin.000004
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_Do_DB:
Replicate_Ignore_DB:
Replicate_Do_Table:
Replicate_Ignore_Table:
Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
Last_Errno: 0
Last_Error:
Skip_Counter: 0
Exec_Master_Log_Pos: 931
Relay_Log_Space: 1365
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:
Master_SSL_Cert:
Master_SSL_Cipher:
Master_SSL_Key:
Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
Last_IO_Errno: 0
Last_IO_Error:
Last_SQL_Errno: 0
Last_SQL_Error:
Replicate_Ignore_Server_Ids: 0
The key fields from the status report to examine are:
Slave_IO_State
: The current status of the
slave. See Section 8.14.4, “Replication Slave I/O Thread States”, and
Section 8.14.5, “Replication Slave SQL Thread States”, for more
information.
Slave_IO_Running
: Whether the I/O thread
for reading the master's binary log is running. Normally,
you want this to be Yes
unless you have
not yet started replication or have explicitly stopped it
with STOP SLAVE
.
Slave_SQL_Running
: Whether the SQL thread
for executing events in the relay log is running. As with
the I/O thread, this should normally be
Yes
.
Last_IO_Error
,
Last_SQL_Error
: The last errors
registered by the I/O and SQL threads when processing the
relay log. Ideally these should be blank, indicating no
errors.
Seconds_Behind_Master
: The number of
seconds that the slave SQL thread is behind processing the
master binary log. A high number (or an increasing one) can
indicate that the slave is unable to handle events from the
master in a timely fashion.
A value of 0 for Seconds_Behind_Master
can usually be interpreted as meaning that the slave has
caught up with the master, but there are some cases where
this is not strictly true. For example, this can occur if
the network connection between master and slave is broken
but the slave I/O thread has not yet noticed this—that
is, slave_net_timeout
has
not yet elapsed.
It is also possible that transient values for
Seconds_Behind_Master
may not reflect the
situation accurately. When the slave SQL thread has caught
up on I/O, Seconds_Behind_Master
displays
0; but when the slave I/O thread is still queuing up a new
event, Seconds_Behind_Master
may show a
large value until the SQL thread finishes executing the new
event. This is especially likely when the events have old
timestamps; in such cases, if you execute
SHOW SLAVE STATUS
several
times in a relatively short period, you may see this value
change back and forth repeatedly between 0 and a relatively
large value.
Several pairs of fields provide information about the progress of the slave in reading events from the master binary log and processing them in the relay log:
(Master_Log_file
,
Read_Master_Log_Pos
): Coordinates in the
master binary log indicating how far the slave I/O thread
has read events from that log.
(Relay_Master_Log_File
,
Exec_Master_Log_Pos
): Coordinates in the
master binary log indicating how far the slave SQL thread
has executed events received from that log.
(Relay_Log_File
,
Relay_Log_Pos
): Coordinates in the slave
relay log indicating how far the slave SQL thread has
executed the relay log. These correspond to the preceding
coordinates, but are expressed in slave relay log
coordinates rather than master binary log coordinates.
On the master, you can check the status of connected slaves
using SHOW PROCESSLIST
to examine
the list of running processes. Slave connections have
Binlog Dump
in the Command
field:
mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
Id: 10
User: root
Host: slave1:58371
db: NULL
Command: Binlog Dump
Time: 777
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
Because it is the slave that drives the replication process, very little information is available in this report.
For slaves that were started with the
--report-host
option and are
connected to the master, the SHOW SLAVE
HOSTS
statement on the master shows basic information
about the slaves. The output includes the ID of the slave
server, the value of the
--report-host
option, the
connecting port, and master ID:
mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)
You can stop and start replication on the slave using the
STOP SLAVE
and
START SLAVE
statements.
To stop processing of the binary log from the master, use
STOP SLAVE
:
mysql> STOP SLAVE;
When replication is stopped, the slave I/O thread stops reading events from the master binary log and writing them to the relay log, and the SQL thread stops reading events from the relay log and executing them. You can pause the I/O or SQL thread individually by specifying the thread type:
mysql>STOP SLAVE IO_THREAD;
mysql>STOP SLAVE SQL_THREAD;
To start execution again, use the START
SLAVE
statement:
mysql> START SLAVE;
To start a particular thread, specify the thread type:
mysql>START SLAVE IO_THREAD;
mysql>START SLAVE SQL_THREAD;
For a slave that performs updates only by processing events from the master, stopping only the SQL thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read events from the master but they are not executed. This makes it easier for the slave to catch up when you restart the SQL thread.
Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up to the point where the relay log ends. This can be useful when you want to pause execution to catch up with events already received from the master, when you want to perform administration on the slave but also ensure that it has processed all updates to a specific point. This method can also be used to pause event receipt on the slave while you conduct administration on the master. Stopping the I/O thread but permitting the SQL thread to run helps ensure that there is not a massive backlog of events to be executed when replication is started again.
If replication stops due to an issue with an event in a replicated transaction, you can resume replication by skipping the failed transaction on the slave. Before skipping a transaction, ensure that the replication slave's I/O thread is stopped as well as the SQL thread.
First you need to identify the replicated event that caused the
error. Details of the error and the last successfully applied
transaction are recorded in the Performance Schema table
replication_applier_status_by_worker
.
You can use mysqlbinlog to retrieve and
display the events that were logged around the time of the
error. For instructions to do this, see
Section 7.5, “Point-in-Time (Incremental) Recovery”. Alternatively, you can
issue SHOW RELAYLOG EVENTS
on the
slave or SHOW BINLOG EVENTS
on
the master.
Before skipping the transaction and restarting the slave, check these points:
Is the transaction that stopped replication from an unknown or untrusted source? If so, investigate the cause in case there are any security considerations that indicate the slave should not be restarted.
Does the transaction that stopped replication need to be applied on the slave? If so, either make the appropriate corrections and reapply the transaction, or manually reconcile the data on the slave.
Did the transaction that stopped replication need to be applied on the master? If not, undo the transaction manually on the server where it originally took place.
To skip the transaction, choose one of the following methods as appropriate:
When GTIDs are in use
(gtid_mode
is
ON
), see
Section 17.1.7.3.1, “Skipping Transactions With GTIDs” .
When GTIDs are not in use or are being phased in
(gtid_mode
is
OFF
, OFF_PERMISSIVE
,
or ON_PERMISSIVE
), see
Section 17.1.7.3.2, “Skipping Transactions Without GTIDs”.
To restart replication after skipping the transaction, issue
START SLAVE
, with the
FOR CHANNEL
clause if the slave is a
multi-source replication slave.
When GTIDs are in use
(gtid_mode
is
ON
), the GTID for a committed transaction
is persisted on the slave even if the content of the
transaction is filtered out. This feature prevents a slave
from retrieving previously filtered transactions when it
reconnects to the master using GTID auto-positioning. It can
also be used to skip a transaction on the slave, by committing
an empty transaction in place of the failing transaction.
If the failing transaction generated an error in a worker
thread, you can obtain its GTID directly from the
LAST_SEEN_TRANSACTION
field in the
Performance Schema table
replication_applier_status_by_worker
.
To see what the transaction is, issue
SHOW RELAYLOG EVENTS
on the
slave or SHOW BINLOG EVENTS
on
the master, and search the output for a transaction preceded
by that GTID.
When you have assessed the failing transaction for any other appropriate actions as described previously (such as security considerations), to skip it, commit an empty transaction on the slave that has the same GTID as the failing transaction. For example:
SET GTID_NEXT='aaa-bbb-ccc-ddd:N'; BEGIN; COMMIT; SET GTID_NEXT='AUTOMATIC';
The presence of this empty transaction on the slave means that
when you issue a START SLAVE
statement to restart replication, the slave uses the auto-skip
function to ignore the failing transaction, because it sees a
transaction with that GTID has already been applied. If the
slave is a multi-source replication slave, you do not need to
specify the channel name when you commit the empty
transaction, but you do need to specify the channel name when
you issue START SLAVE
.
Note that if binary logging is in use on this slave, the empty transaction will enter the replication stream if the slave becomes a master or primary in the future. If you need to avoid this possibility, consider flushing and purging the slave's binary logs, as in this example:
FLUSH LOGS; PURGE BINARY LOGS TO 'binlog.000146';
The GTID of the empty transaction is persisted, but the transaction itself is removed by purging the binary log files.
To skip failing transactions when GTIDs are not in use or are
being phased in (gtid_mode
is
OFF
, OFF_PERMISSIVE
, or
ON_PERMISSIVE
), you can skip a specified
number of events by issuing a SET GLOBAL
sql_slave_skip_counter
statement. Alternatively, you
can skip past an event or events by issuing a
CHANGE MASTER TO
statement to
move the master log position forward.
When you use these methods, it is important to understand that you are not necessarily skipping a complete transaction, as is always the case with the GTID-based method described previously. These non-GTID-based methods are not aware of transactions as such, but instead operate on events. The binary log is organized as a sequence of groups known as event groups, and each event group consists of a sequence of events.
For transactional tables, an event group corresponds to a transaction.
For nontransactional tables, an event group corresponds to a single SQL statement.
A single transaction can contain changes to both transactional and nontransactional tables.
When you use a SET GLOBAL
sql_slave_skip_counter
statement to skip events and
the resulting position is in the middle of an event group, the
slave continues to skip events until it reaches the end of the
group. Execution then starts with the next event group. The
CHANGE MASTER TO
statement does
not have this function, so you must be careful to identify the
correct location to restart replication at the beginning of an
event group. However, using CHANGE MASTER
TO
means you do not have to count the events that
need to be skipped, as you do with a SET GLOBAL
sql_slave_skip_counter
, and instead you can just
specify the location to restart.
When you have assessed the failing transaction for any other
appropriate actions as described previously (such as
security considerations), count the number of events that
you need to skip. One event normally corresponds to one SQL
statement in the binary log, but note that statements that
use AUTO_INCREMENT
or
LAST_INSERT_ID()
count as two events in
the binary log. When binary log transaction compression is
in use, a compressed transaction payload
(Transaction_payload_event
) is counted as
a single counter value, so all the events inside it are
skipped as a unit.
If you want to skip the complete transaction, you can count
the events to the end of the transaction, or you can just
skip the relevant event group. Remember that with
SET GLOBAL sql_slave_skip_counter
, the
slave continues to skip to the end of an event group. Make
sure you do not skip too far forward and go into the next
event group or transaction, as this will then also be
skipped.
Issue the SET
statement as follows, where
N
is the number of events from
the master to skip:
SET GLOBAL sql_slave_skip_counter = N
This statement cannot be issued if
gtid_mode=ON
is set, or if
the slave threads are running.
The SET GLOBAL sql_slave_skip_counter
statement has no immediate effect. When you issue the
START SLAVE
statement for the
next time following this SET
statement,
the new value for the system variable
sql_slave_skip_counter
is
applied, and the events are skipped. That
START SLAVE
statement also
automatically sets the value of the system variable back to
0. If the slave is a multi-source replication slave, when
you issue that START SLAVE
statement, the FOR CHANNEL
clause is
required. Make sure that you name the correct channel,
otherwise events will be skipped on the wrong channel.
When you have assessed the failing transaction for any other appropriate actions as described previously (such as security considerations), identify the coordinates (file and position) in the master's binary log that represent a suitable position to restart replication. This can be the start of the event group following the event that caused the issue, or the start of the next transaction. The slave I/O thread will begin reading from the master at these coordinates the next time the thread starts, skipping the failing event. Make sure that you have identified the position accurately, because this statement does not take event groups into account.
Issue the CHANGE MASTER TO
statement as follows, where
master_log_name
is the binary log
file that contains the restart position, and
master_log_pos
is the number
representing the restart position as stated in the binary
log file:
CHANGE MASTER TO MASTER_LOG_FILE='master_log_name
', MASTER_LOG_POS=master_log_pos
;
If the slave is a multi-source replication slave, you must
use the FOR CHANNEL
clause to name the
appropriate channel on the CHANGE
MASTER TO
statement.
This statement cannot be issued if
MASTER_AUTO_POSITION=1
is set, or if the
slave threads are running. If you need to use this method of
skipping a transaction when
MASTER_AUTO_POSITION=1
is normally set,
you can change the setting to
MASTER_AUTO_POSITION=1
while issuing the
statement, then change it back again afterwards. For
example:
CHANGE MASTER TO MASTER_AUTO_POSITION=0, MASTER_LOG_FILE='binlog.000145', MASTER_LOG_POS=235; CHANGE MASTER TO MASTER_AUTO_POSITION=1;
Replication is based on the master server keeping track of all
changes to its databases (updates, deletes, and so on) in its binary
log. The binary log serves as a written record of all events that
modify database structure or content (data) from the moment the
server was started. Typically, SELECT
statements are not recorded because they modify neither database
structure nor content.
Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from the master, rather than the master pushing the data to the slave. The slave also executes the events from the binary log that it receives. This has the effect of repeating the original changes just as they were made on the master. Tables are created or their structure modified, and data is inserted, deleted, and updated according to the changes that were originally made on the master.
Because each slave is independent, the replaying of the changes from the master's binary log occurs independently on each slave that is connected to the master. In addition, because each slave receives a copy of the binary log only by requesting it from the master, the slave is able to read and update the copy of the database at its own pace and can start and stop the replication process at will without affecting the ability to update to the latest database status on either the master or slave side.
For more information on the specifics of the replication implementation, see Section 17.2.2, “Replication Implementation Details”.
Masters and slaves report their status in respect of the replication process regularly so that you can monitor them. See Section 8.14, “Examining Thread Information”, for descriptions of all replicated-related states.
The master binary log is written to a local relay log on the slave before it is processed. The slave also records information about the current position with the master's binary log and the local relay log. See Section 17.2.4, “Replication Relay and Status Logs”.
Database changes are filtered on the slave according to a set of rules that are applied according to the various configuration options and variables that control event evaluation. For details on how these rules are applied, see Section 17.2.5, “How Servers Evaluate Replication Filtering Rules”.
Replication works because events written to the binary log are read from the master and then processed on the slave. The events are recorded within the binary log in different formats according to the type of event. The different replication formats used correspond to the binary logging format used when the events were recorded in the master's binary log. The correlation between binary logging formats and the terms used during replication are:
When using statement-based binary logging, the master writes SQL statements to the binary log. Replication of the master to the slave works by executing the SQL statements on the slave. This is called statement-based replication (which can be abbreviated as SBR), which corresponds to the MySQL statement-based binary logging format.
When using row-based logging, the master writes events to the binary log that indicate how individual table rows are changed. Replication of the master to the slave works by copying the events representing the changes to the table rows to the slave. This is called row-based replication (which can be abbreviated as RBR).
Row-based logging is the default method.
You can also configure MySQL to use a mix of both statement-based and row-based logging, depending on which is most appropriate for the change to be logged. This is called mixed-format logging. When using mixed-format logging, a statement-based log is used by default. Depending on certain statements, and also the storage engine being used, the log is automatically switched to row-based in particular cases. Replication using the mixed format is referred to as mixed-based replication or mixed-format replication. For more information, see Section 5.4.4.3, “Mixed Binary Logging Format”.
NDB Cluster.
The default binary logging format in MySQL NDB Cluster 8.0 is
MIXED
. You should note that NDB Cluster
Replication always uses row-based replication, and that the
NDB
storage engine is incompatible
with statement-based replication. See
Section 22.6.2, “General Requirements for NDB Cluster Replication”, for more
information.
When using MIXED
format, the binary logging
format is determined in part by the storage engine being used and
the statement being executed. For more information on mixed-format
logging and the rules governing the support of different logging
formats, see Section 5.4.4.3, “Mixed Binary Logging Format”.
The logging format in a running MySQL server is controlled by
setting the binlog_format
server
system variable. This variable can be set with session or global
scope. The rules governing when and how the new setting takes
effect are the same as for other MySQL server system variables.
Setting the variable for the current session lasts only until the
end of that session, and the change is not visible to other
sessions. Setting the variable globally takes effect for clients
that connect after the change, but not for any current client
sessions, including the session where the variable setting was
changed. To make the global system variable setting permanent so
that it applies across server restarts, you must set it in an
option file. For more information, see
Section 13.7.6.1, “SET Syntax for Variable Assignment”.
There are conditions under which you cannot change the binary logging format at runtime or doing so causes replication to fail. See Section 5.4.4.2, “Setting The Binary Log Format”.
Changing the global binlog_format
value requires privileges sufficient to set global system
variables. Changing the session
binlog_format
value requires
privileges sufficient to set restricted session system variables.
See Section 5.1.9.1, “System Variable Privileges”.
The statement-based and row-based replication formats have different issues and limitations. For a comparison of their relative advantages and disadvantages, see Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
With statement-based replication, you may encounter issues with replicating stored routines or triggers. You can avoid these issues by using row-based replication instead. For more information, see Section 24.7, “Stored Program Binary Logging”.
Each binary logging format has advantages and disadvantages. For most users, the mixed replication format should provide the best combination of data integrity and performance. If, however, you want to take advantage of the features specific to the statement-based or row-based replication format when performing certain tasks, you can use the information in this section, which provides a summary of their relative advantages and disadvantages, to determine which is best for your needs.
Proven technology.
Less data written to log files. When updates or deletes affect many rows, this results in much less storage space required for log files. This also means that taking and restoring from backups can be accomplished more quickly.
Log files contain all statements that made any changes, so they can be used to audit the database.
Statements that are unsafe for SBR.
Not all statements which modify data (such as
INSERT
DELETE
,
UPDATE
, and
REPLACE
statements) can be
replicated using statement-based replication. Any
nondeterministic behavior is difficult to replicate when
using statement-based replication. Examples of such Data
Modification Language (DML) statements include the
following:
A statement that depends on a UDF or stored program that is nondeterministic, since the value returned by such a UDF or stored program or depends on factors other than the parameters supplied to it. (Row-based replication, however, simply replicates the value returned by the UDF or stored program, so its effect on table rows and data is the same on both the master and slave.) See Section 17.5.1.16, “Replication of Invoked Features”, for more information.
DELETE
and
UPDATE
statements that
use a LIMIT
clause without an
ORDER BY
are nondeterministic. See
Section 17.5.1.18, “Replication and LIMIT”.
Locking read statements
(SELECT ... FOR
UPDATE
and
SELECT ... FOR
SHARE
) that use NOWAIT
or
SKIP LOCKED
options. See
Locking Read Concurrency with NOWAIT and SKIP LOCKED.
Deterministic UDFs must be applied on the slaves.
Statements using any of the following functions cannot be replicated properly using statement-based replication:
SYSDATE()
(unless
both the master and the slave are started with the
--sysdate-is-now
option)
However, all other functions are replicated correctly
using statement-based replication, including
NOW()
and so forth.
For more information, see Section 17.5.1.14, “Replication and System Functions”.
Statements that cannot be replicated correctly using statement-based replication are logged with a warning like the one shown here:
[Warning] Statement is not safe to log in statement format.
A similar warning is also issued to the client in such
cases. The client can display it using
SHOW WARNINGS
.
INSERT ...
SELECT
requires a greater number of row-level
locks than with row-based replication.
UPDATE
statements that
require a table scan (because no index is used in the
WHERE
clause) must lock a greater number
of rows than with row-based replication.
For InnoDB
: An
INSERT
statement that uses
AUTO_INCREMENT
blocks other
nonconflicting INSERT
statements.
For complex statements, the statement must be evaluated and executed on the slave before the rows are updated or inserted. With row-based replication, the slave only has to modify the affected rows, not execute the full statement.
If there is an error in evaluation on the slave, particularly when executing complex statements, statement-based replication may slowly increase the margin of error across the affected rows over time. See Section 17.5.1.28, “Slave Errors During Replication”.
Stored functions execute with the same
NOW()
value as the calling
statement. However, this is not true of stored procedures.
Deterministic UDFs must be applied on the slaves.
Table definitions must be (nearly) identical on master and slave. See Section 17.5.1.9, “Replication with Differing Table Definitions on Master and Slave”, for more information.
All changes can be replicated. This is the safest form of replication.
Statements that update the information in the
mysql
system schema—such as
GRANT
,
REVOKE
and the manipulation
of triggers, stored routines (including stored
procedures), and views—are all replicated to slaves
using statement-based replication.
For statements such as
CREATE TABLE
... SELECT
, a CREATE
statement is generated from the table definition and
replicated using statement-based format, while the row
insertions are replicated using row-based format.
Fewer row locks are required on the master, which thus achieves higher concurrency, for the following types of statements:
Fewer row locks are required on the slave for any
INSERT
,
UPDATE
, or
DELETE
statement.
RBR can generate more data that must be logged. To replicate
a DML statement (such as an
UPDATE
or
DELETE
statement),
statement-based replication writes only the statement to the
binary log. By contrast, row-based replication writes each
changed row to the binary log. If the statement changes many
rows, row-based replication may write significantly more
data to the binary log; this is true even for statements
that are rolled back. This also means that making and
restoring a backup can require more time. In addition, the
binary log is locked for a longer time to write the data,
which may cause concurrency problems. Use
binlog_row_image=minimal
to
reduce the disadvantage considerably.
Deterministic UDFs that generate large
BLOB
values take longer to
replicate with row-based replication than with
statement-based replication. This is because the
BLOB
column value is logged,
rather than the statement generating the data.
You cannot see on the slave what statements were received
from the master and executed. However, you can see what data
was changed using mysqlbinlog with the
options
--base64-output=DECODE-ROWS
and --verbose
.
Alternatively, use the
binlog_rows_query_log_events
variable, which if enabled adds a
Rows_query
event with the statement to
mysqlbinlog output when the
-vv
option is used.
For tables using the MyISAM
storage engine, a stronger lock is required on the slave for
INSERT
statements when
applying them as row-based events to the binary log than
when applying them as statements. This means that concurrent
inserts on MyISAM
tables are
not supported when using row-based replication.
MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging. The type of binary log used impacts the size and efficiency of logging. Therefore the choice between row-based replication (RBR) or statement-based replication (SBR) depends on your application and environment. This section describes known issues when using a row-based format log, and describes some best practices using it in replication.
For additional information, see Section 17.2.1, “Replication Formats”, and Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
For information about issues specific to NDB Cluster Replication (which depends on row-based replication), see Section 22.6.3, “Known Issues in NDB Cluster Replication”.
Row-based logging of temporary tables. As noted in Section 17.5.1.30, “Replication and Temporary Tables”, temporary tables are not replicated when using row-based format or (from MySQL 8.0.4) mixed format. For more information, see Section 17.2.1.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
Temporary tables are not replicated when using row-based or mixed format because there is no need. In addition, because temporary tables can be read only from the thread which created them, there is seldom if ever any benefit obtained from replicating them, even when using statement-based format.
You can switch from statement-based to row-based binary
logging format at runtime even when temporary tables have
been created. However, in MySQL 8.0, you cannot switch from
row-based or mixed format for binary logging to
statement-based format at runtime, because any
CREATE TEMPORARY TABLE
statements will
have been omitted from the binary log in the previous mode.
The MySQL server tracks the logging mode that was in effect
when each temporary table was created. When a given client
session ends, the server logs a DROP TEMPORARY
TABLE IF EXISTS
statement for each temporary table
that still exists and was created when statement-based
binary logging was in use. If row-based or mixed format
binary logging was in use when the table was created, the
DROP TEMPORARY TABLE IF EXISTS
statement
is not logged. In releases before MySQL 8.0.4 and 5.7.25,
the DROP TEMPORARY TABLE IF EXISTS
statement was logged regardless of the logging mode that was
in effect.
Nontransactional DML statements involving temporary tables
are allowed when using
binlog_format=ROW
, as long
as any nontransactional tables affected by the statements
are temporary tables (Bug #14272672).
RBL and synchronization of nontransactional tables. When many rows are affected, the set of changes is split into several events; when the statement commits, all of these events are written to the binary log. When executing on the slave, a table lock is taken on all tables involved, and then the rows are applied in batch mode. Depending on the engine used for the slave's copy of the table, this may or may not be effective.
Latency and binary log size. RBL writes changes for each row to the binary log and so its size can increase quite rapidly. This can significantly increase the time required to make changes on the slave that match those on the master. You should be aware of the potential for this delay in your applications.
Reading the binary log.
mysqlbinlog displays row-based events
in the binary log using the BINLOG
statement (see Section 13.7.8.1, “BINLOG Statement”). This statement
displays an event as a base 64-encoded string, the meaning
of which is not evident. When invoked with the
--base64-output=DECODE-ROWS
and --verbose
options,
mysqlbinlog formats the contents of the
binary log to be human readable. When binary log events
were written in row-based format and you want to read or
recover from a replication or database failure you can use
this command to read contents of the binary log. For more
information, see Section 4.6.8.2, “mysqlbinlog Row Event Display”.
Binary log execution errors and slave_exec_mode.
Using
slave_exec_mode=IDEMPOTENT
is generally only useful with MySQL NDB Cluster
replication, for which IDEMPOTENT
is
the default value. (See
Section 22.6.10, “NDB Cluster Replication: Multi-Master and Circular Replication”).
When slave_exec_mode
is
IDEMPOTENT
, a failure to apply changes
from RBL because the original row cannot be found does not
trigger an error or cause replication to fail. This means
that it is possible that updates are not applied on the
slave, so that the master and slave are no longer
synchronized. Latency issues and use of nontransactional
tables with RBR when
slave_exec_mode
is
IDEMPOTENT
can cause the master and
slave to diverge even further. For more information about
slave_exec_mode
, see
Section 5.1.8, “Server System Variables”.
For other scenarios, setting
slave_exec_mode
to
STRICT
is normally sufficient; this is
the default value for storage engines other than
NDB
.
Filtering based on server ID not supported.
You can filter based on server ID by using the
IGNORE_SERVER_IDS
option for the
CHANGE MASTER TO
statement.
This option works with statement-based and row-based
logging formats, but is deprecated for use when
GTID_MODE=ON
is set.
Another method to filter out changes on some slaves is to
use a WHERE
clause that includes the
relation @@server_id <>
clause with
id_value
UPDATE
and
DELETE
statements. For
example, WHERE @@server_id <> 1
.
However, this does not work correctly with row-based
logging. To use the
server_id
system variable
for statement filtering, use statement-based logging.
RBL, nontransactional tables, and stopped slaves.
When using row-based logging, if the slave server is
stopped while a slave thread is updating a
nontransactional table, the slave database can reach an
inconsistent state. For this reason, it is recommended
that you use a transactional storage engine such as
InnoDB
for all tables
replicated using the row-based format. Use of
STOP SLAVE
or
STOP SLAVE
SQL_THREAD
prior to shutting down the slave
MySQL server helps prevent issues from occurring, and is
always recommended regardless of the logging format or
storage engine you use.
The “safeness” of a statement in MySQL replication refers to whether the statement and its effects can be replicated correctly using statement-based format. If this is true of the statement, we refer to the statement as safe; otherwise, we refer to it as unsafe.
In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this section). In addition, statements using results from floating-point math functions—which are hardware-dependent—are always considered unsafe (see Section 17.5.1.12, “Replication and Floating-Point Values”).
Handling of safe and unsafe statements.
A statement is treated differently depending on whether the
statement is considered safe, and with respect to the binary
logging format (that is, the current value of
binlog_format
).
When using row-based logging, no distinction is made in the treatment of safe and unsafe statements.
When using mixed-format logging, statements flagged as unsafe are logged using the row-based format; statements regarded as safe are logged using the statement-based format.
When using statement-based logging, statements flagged as being unsafe generate a warning to this effect. Safe statements are logged normally.
Each statement flagged as unsafe generates a warning. If a large
number of such statements were executed on the master, this
could lead to excessively large error log files. To prevent
this, MySQL has a warning suppression mechanism. Whenever the 50
most recent
ER_BINLOG_UNSAFE_STATEMENT
warnings have been generated more than 50 times in any 50-second
period, warning suppression is enabled. When activated, this
causes such warnings not to be written to the error log;
instead, for each 50 warnings of this type, a note The
last warning was repeated
is written
to the error log. This continues as long as the 50 most recent
such warnings were issued in 50 seconds or less; once the rate
has decreased below this threshold, the warnings are once again
logged normally. Warning suppression has no effect on how the
safety of statements for statement-based logging is determined,
nor on how warnings are sent to the client. MySQL clients still
receive one warning for each such statement.
N
times in
last S
seconds
For more information, see Section 17.2.1, “Replication Formats”.
Statements considered unsafe. Statements with the following characteristics are considered unsafe:
Statements containing system functions that may return a different value
on the slave.
These functions include
FOUND_ROWS()
,
GET_LOCK()
,
IS_FREE_LOCK()
,
IS_USED_LOCK()
,
LOAD_FILE()
,
MASTER_POS_WAIT()
,
RAND()
,
RELEASE_LOCK()
,
ROW_COUNT()
,
SESSION_USER()
,
SLEEP()
,
SYSDATE()
,
SYSTEM_USER()
,
USER()
,
UUID()
, and
UUID_SHORT()
.
Nondeterministic functions not considered unsafe.
Although these functions are not deterministic, they are
treated as safe for purposes of logging and replication:
CONNECTION_ID()
,
CURDATE()
,
CURRENT_DATE()
,
CURRENT_TIME()
,
CURRENT_TIMESTAMP()
,
CURTIME()
,,
LAST_INSERT_ID()
,
LOCALTIME()
,
LOCALTIMESTAMP()
,
NOW()
,
UNIX_TIMESTAMP()
,
UTC_DATE()
,
UTC_TIME()
, and
UTC_TIMESTAMP()
.
For more information, see Section 17.5.1.14, “Replication and System Functions”.
References to system variables. Most system variables are not replicated correctly using the statement-based format. See Section 17.5.1.38, “Replication and Variables”. For exceptions, see Section 5.4.4.3, “Mixed Binary Logging Format”.
UDFs. Since we have no control over what a UDF does, we must assume that it is executing unsafe statements.
Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore, statements depending on it could have different results. For this reason, all statements relying on the fulltext plugin are treated as unsafe in MySQL.
Trigger or stored program updates a table having an AUTO_INCREMENT column. This is unsafe because the order in which the rows are updated may differ on the master and the slave.
In addition, an INSERT
into a
table that has a composite primary key containing an
AUTO_INCREMENT
column that is not the
first column of this composite key is unsafe.
For more information, see Section 17.5.1.1, “Replication and AUTO_INCREMENT”.
INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique keys. When executed against a table that contains more than one primary or unique key, this statement is considered unsafe, being sensitive to the order in which the storage engine checks the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server depends.
An
INSERT
... ON DUPLICATE KEY UPDATE
statement against a
table having more than one unique or primary key is marked
as unsafe for statement-based replication. (Bug #11765650,
Bug #58637)
Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore considered unsafe. See Section 17.5.1.18, “Replication and LIMIT”.
Accesses or references log tables. The contents of the system log table may differ between master and slave.
Nontransactional operations after transactional operations. Within a transaction, allowing any nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.
For more information, see Section 17.5.1.34, “Replication and Transactions”.
Accesses or references self-logging tables. All reads and writes to self-logging tables are considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is also considered unsafe.
LOAD DATA statements.
LOAD DATA
is treated as
unsafe and when
binlog_format=MIXED
the
statement is logged in row-based format. When
binlog_format=STATEMENT
LOAD DATA
does not generate
a warning, unlike other unsafe statements.
XA transactions.
If two XA transactions committed in parallel on the master
are being prepared on the slave in the inverse order,
locking dependencies can occur with statement-based
replication that cannot be safely resolved, and it is
possible for replication to fail with deadlock on the
slave. When
binlog_format=STATEMENT
is set, DML statements inside XA transactions are flagged
as being unsafe and generate a warning. When
binlog_format=MIXED
or
binlog_format=ROW
is set,
DML statements inside XA transactions are logged using
row-based replication, and the potential issue is not
present.
DEFAULT
clause that refers to a nondeterministic
function.
If an expression default value refers to a
nondeterministic function, any statement that causes the
expression to be evaluated is unsafe for statement-based
replication. This includes statements such as
INSERT
,
UPDATE
, and
ALTER TABLE
. Unlike most
other unsafe statements, this category of statement cannot
be replicated safely in row-based format. When
binlog_format
is set to
STATEMENT
, the statement is logged and
executed but a warning message is written to the error
log. When binlog_format
is set to MIXED
or
ROW
, the statement is not executed and
an error message is written to the error log. For more
information on the handling of explicit defaults, see
Handling of Explicit Defaults as of MySQL 8.0.13.
For additional information, see Section 17.5.1, “Replication Features and Issues”.
MySQL replication capabilities are implemented using three threads, one on the master server and two on the slave:
Binlog dump thread.
The master creates a thread to send the binary log contents
to a slave when the slave connects. This thread can be
identified in the output of SHOW
PROCESSLIST
on the master as the Binlog
Dump
thread.
The binary log dump thread acquires a lock on the master's binary log for reading each event that is to be sent to the slave. As soon as the event has been read, the lock is released, even before the event is sent to the slave.
Slave I/O thread.
When a START SLAVE
statement
is issued on a slave server, the slave creates an I/O
thread, which connects to the master and asks it to send the
updates recorded in its binary logs.
The slave I/O thread reads the updates that the master's
Binlog Dump
thread sends (see previous
item) and copies them to local files that comprise the slave's
relay log.
The state of this thread is shown as
Slave_IO_running
in the output of
SHOW SLAVE STATUS
.
Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the slave I/O thread and execute the events contained therein.
In the preceding description, there are three threads per master/slave connection. A master that has multiple slaves creates one binary log dump thread for each currently connected slave, and each slave has its own I/O and SQL threads.
A slave uses two threads to separate reading updates from the master and executing them into independent tasks. Thus, the task of reading statements is not slowed down if statement execution is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for execution the next time that the slave starts.
The SHOW PROCESSLIST
statement
provides information that tells you what is happening on the
master and on the slave regarding replication. For information on
master states, see Section 8.14.3, “Replication Master Thread States”. For
slave states, see Section 8.14.4, “Replication Slave I/O Thread States”, and
Section 8.14.5, “Replication Slave SQL Thread States”.
The following example illustrates how the three threads show up in
the output from SHOW PROCESSLIST
.
On the master server, the output from SHOW
PROCESSLIST
looks like this:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
Id: 2
User: root
Host: localhost:32931
db: NULL
Command: Binlog Dump
Time: 94
State: Has sent all binlog to slave; waiting for binlog to
be updated
Info: NULL
Here, thread 2 is a Binlog Dump
replication
thread that services a connected slave. The
State
information indicates that all
outstanding updates have been sent to the slave and that the
master is waiting for more updates to occur. If you see no
Binlog Dump
threads on a master server, this
means that replication is not running; that is, no slaves are
currently connected.
On a slave server, the output from SHOW
PROCESSLIST
looks like this:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
Id: 10
User: system user
Host:
db: NULL
Command: Connect
Time: 11
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 11
User: system user
Host:
db: NULL
Command: Connect
Time: 11
State: Has read all relay log; waiting for the slave I/O
thread to update it
Info: NULL
The State
information indicates that thread 10
is the I/O thread that is communicating with the master server,
and thread 11 is the SQL thread that is processing the updates
stored in the relay logs. At the time that
SHOW PROCESSLIST
was run, both
threads were idle, waiting for further updates.
The value in the Time
column can show how late
the slave is compared to the master. See
Section A.14, “MySQL 8.0 FAQ: Replication”. If sufficient time elapses on
the master side without activity on the Binlog
Dump
thread, the master determines that the slave is no
longer connected. As for any other client connection, the timeouts
for this depend on the values of
net_write_timeout
and
net_retry_count
; for more information about
these, see Section 5.1.8, “Server System Variables”.
The SHOW SLAVE STATUS
statement
provides additional information about replication processing on a
slave server. See
Section 17.1.7.1, “Checking Replication Status”.
In MySQL multi-source replication, a slave opens multiple replication channels, one for each master. The replication channels represent the path of transactions flowing from a master to the slave. Each replication channel has its own receiver (I/O) thread, one or more applier (SQL) threads, and relay log. When transactions from a master are received by a channel's receiver thread, they are added to the channel's relay log file and passed through to the channel's applier threads. This enables each channel to function independently.
This section describes how channels can be used in a replication topology, and the impact they have on single-source replication. For instructions to configure masters and slaves for multi-source replication, to start, stop and reset multi-source slaves, and to monitor multi-source replication, see Section 17.1.4, “MySQL Multi-Source Replication”.
The maximum number of channels that can be created on one slave in a multi-source replication topology is 256. Each replication channel must have a unique (nonempty) name, as explained in Section 17.2.3.4, “Replication Channel Naming Conventions”. The error codes and messages that are issued when multi-source replication is enabled specify the channel that generated the error.
Each channel on a multi-source replication slave must replicate from a different master. You cannot set up multiple replication channels from a single slave to a single master. This is because the server IDs of replication slaves must be unique in a replication topology. The master distinguishes slaves only by their server IDs, not by the names of the replication channels, so it cannot recognize different replication channels from the same slave.
A multi-source replication slave can also be set up as a
multi-threaded replication slave, by setting the
slave_parallel_workers
system
variable to a value greater than 0. When you do this on a
multi-source replication slave, each channel on the slave has the
specified number of applier threads, plus a coordinator thread to
manage them. You cannot configure the number of applier threads for
individual channels.
From MySQL 8.0, multi-source replication slaves can be configured with replication filters on specific replication channels. Channel specific replication filters can be used when the same database or table is present on multiple masters, and you only need the slave to replicate it from one master. For more information, see Section 17.2.5.4, “Replication Channel Based Filters”.
To provide compatibility with previous versions, the MySQL server
automatically creates on startup a default channel whose name is the
empty string (""
). This channel is always
present; it cannot be created or destroyed by the user. If no other
channels (having nonempty names) have been created, replication
statements act on the default channel only, so that all replication
statements from older slaves function as expected (see
Section 17.2.3.2, “Compatibility with Previous Replication Statements”. Statements
applying to replication channels as described in this section can be
used only when there is at least one named channel.
To enable MySQL replication operations to act on individual
replication channels, use the FOR CHANNEL
clause with the
following replication statements:
channel
An additional channel
parameter is introduced
for the following function:
The following statements are disallowed for the
group_replication_recovery
channel:
The following statements are disallowed for the
group_replication_applier
channel:
FLUSH RELAY LOGS
is now permitted for the
group_replication_applier
channel, but if the
request is received while a transaction is being applied, the
request is performed after the transaction ends. The requester
must wait while the transaction is completed and the rotation
takes place. This behavior prevents transactions from being split,
which is not permitted for Group Replication.
When a replication slave has multiple channels and a FOR
CHANNEL
option is not
specified, a valid statement generally acts on all available
channels, with some specific exceptions.
channel
For example, the following statements behave as expected for all except certain Group Replication channels:
START SLAVE
starts replication
threads for all channels, except the
group_replication_recovery
and
group_replication_applier
channels.
STOP SLAVE
stops replication
threads for all channels, except the
group_replication_recovery
and
group_replication_applier
channels.
SHOW SLAVE STATUS
reports the
status for all channels, except the
group_replication_applier
channel.
RESET
SLAVE
resets all channels.
Use RESET SLAVE
with caution as this
statement deletes all existing channels, purges their relay log
files, and recreates only the default channel.
Some replication statements cannot operate on all channels. In
this case, error 1964 Multiple channels exist on the
slave. Please provide channel name as an argument. is
generated. The following statements and functions generate this
error when used in a multi-source replication topology and a
FOR CHANNEL
option is not used to specify which channel to act on:
channel
Note that a default channel always exists in a single source replication topology, where statements and functions behave as in previous versions of MySQL.
This section describes startup options which are impacted by the addition of replication channels.
The following startup settings must be configured correctly to use multi-source replication.
This must be set to TABLE
. If this variable
is set to FILE
, attempting to add more
sources to a slave fails with
ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY
.
The FILE
setting is now deprecated, and
TABLE
is the default.
This must be set to TABLE
. If this variable
is set to FILE
, attempting to add more
sources to a slave fails with
ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY
.
The FILE
setting is now deprecated, and
TABLE
is the default.
The following startup options now affect all channels in a replication topology.
All transactions received by the slave (even from multiple sources) are written in the binary log.
When set, each channel purges its own relay log automatically.
The specified number of transaction retries can take place on all applier threads of all channels.
No replication threads start on any channels.
Execution continues and errors are skipped for all channels.
The values set for the following startup options apply on each channel; since these are mysqld startup options, they are applied on every channel.
--max-relay-log-size=
size
Maximum size of the individual relay log file for each channel; after reaching this limit, the file is rotated.
--relay-log-space-limit=
size
Upper limit for the total size of all relay logs combined, for
each individual channel. For N
channels, the combined size of these logs is limited to
relay_log_space_limit *
.
N
--slave-parallel-workers=
value
Number of slave parallel workers per channel.
Waiting time by an I/O thread for each source.
--relay-log-index=filename
Base name for each channel's relay log index file. See Section 17.2.3.4, “Replication Channel Naming Conventions”.
--relay-log=filename
Denotes the base name of each channel's relay log file. See Section 17.2.3.4, “Replication Channel Naming Conventions”.
--slave_net-timeout=N
This value is set per channel, so that each channel waits for
N
seconds to check for a broken
connection.
--slave-skip-counter=N
This value is set per channel, so that each channel skips
N
events from its master.
This section describes how naming conventions are impacted by replication channels.
Each replication channel has a unique name which is a string with a maximum length of 64 characters and is case-insensitive. Because channel names are used in slave tables, the character set used for these is always UTF-8. Although you are generally free to use any name for channels, the following names are reserved:
group_replication_applier
group_replication_recovery
The name you choose for a replication channel also influences the
file names used by a multi-source replication slave. The relay log
files and index files for each channel are named
,
where relay_log_basename
-channel
.xxxxxxrelay_log_basename
is a base name
specified using the relay_log
system variable, and channel
is the
name of the channel logged to this file. If you do not specify the
relay_log
system variable, a
default file name is used that also includes the name of the
channel.
During replication, a slave server creates several logs that hold the binary log events relayed from the master to the slave, and record information about the current status and location within the relay log. There are three types of logs used in the process, listed here:
The relay log consists of the events read from the binary log of the master and written by the slave I/O thread. Events in the relay log are executed on the slave as part of the SQL thread.
The master info log contains status and
current configuration information for the slave's
connection to the master. This log holds information on the
master host name, login credentials, and coordinates
indicating how far the slave has read from the master's binary
log. The master info log is written to the
mysql.slave_master_info
table.
The relay log info log holds status
information about the execution point within the slave's
relay log. The relay log is written to the
mysql.slave_relay_log_info
table.
In MySQL 8.0, a warning is given when mysqld is unable to initialize the replication logging tables, but the slave is allowed to continue starting. This situation is most likely to occur when upgrading from a version of MySQL that does not support slave logging tables to one in which they are supported.
In MySQL 8.0, execution of any statement requiring a
write lock on either or both of the
slave_master_info
and
slave_relay_log_info
tables is disallowed while
replication is ongoing, while statements that perform only reads
are permitted at any time.
Do not attempt to update or insert rows in the
slave_master_info
or
slave_relay_log_info
tables manually. Doing
so can cause undefined behavior, and is not supported.
Making replication resilient to unexpected halts.
The mysql.slave_master_info
and
mysql.slave_relay_log_info
tables are created
using the transactional storage engine
InnoDB
. Updates to the relay log
info log table are committed together with the transactions,
meaning that the slave's progress information recorded in that
log is always consistent with what has been applied to the
database, even in the event of an unexpected server halt. The
--relay-log-recovery
option must
be enabled on the slave to guarantee resilience. For more
details, see
Section 17.4.2, “Handling an Unexpected Halt of a Replication Slave”.
The relay log, like the binary log, consists of a set of numbered files containing events that describe database changes, and an index file that contains the names of all used relay log files. The default location for relay log files is the data directory.
The term “relay log file” generally denotes an individual numbered file containing database events. The term “relay log” collectively denotes the set of numbered relay log files plus the index file.
Relay log files have the same format as binary log files and can be read using mysqlbinlog (see Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”). If binary log transaction compression (available as of MySQL 8.0.20) is in use, transaction payloads written to the relay log are compressed in the same way as for the binary log. For more information on binary log transaction compression, see Section 5.4.4.5, “Binary Log Transaction Compression”.
For the default replication channel, relay log file names have
the default form
,
where host_name
-relay-bin.nnnnnn
host_name
is the name of the
slave server host and nnnnnn
is a
sequence number. Successive relay log files are created using
successive sequence numbers, beginning with
000001
. For non-default replication channels,
the default base name is
,
where host_name
-relay-bin-channel
channel
is the name of the
replication channel recorded in the relay log.
The slave uses an index file to track the relay log files
currently in use. The default relay log index file name is
for the default channel, and
host_name
-relay-bin.index
for non-default replication channels.
host_name
-relay-bin-channel
.index
The default relay log file and relay log index file names and
locations can be overridden with, respectively, the
relay_log
and
relay_log_index
system
variables (see Section 17.1.6, “Replication and Binary Logging Options and Variables”).
If a slave uses the default host-based relay log file names,
changing a slave's host name after replication has been set up
can cause replication to fail with the errors Failed
to open the relay log and Could not find
target log during relay log initialization. This is
a known issue (see Bug #2122). If you anticipate that a slave's
host name might change in the future (for example, if networking
is set up on the slave such that its host name can be modified
using DHCP), you can avoid this issue entirely by using the
relay_log
and
relay_log_index
system
variables to specify relay log file names explicitly when you
initially set up the slave. This will make the names independent
of server host name changes.
If you encounter the issue after replication has already begun, one way to work around it is to stop the slave server, prepend the contents of the old relay log index file to the new one, and then restart the slave. On a Unix system, this can be done as shown here:
shell>cat
shell>new_relay_log_name
.index >>old_relay_log_name
.indexmv
old_relay_log_name
.indexnew_relay_log_name
.index
A slave server creates a new relay log file under the following conditions:
Each time the I/O thread starts.
When the logs are flushed (for example, with
FLUSH LOGS
or
mysqladmin flush-logs).
When the size of the current relay log file becomes too large, which is determined as follows:
If the value of
max_relay_log_size
is
greater than 0, that is the maximum relay log file size.
If the value of
max_relay_log_size
is
0, max_binlog_size
determines the maximum relay log file size.
The SQL thread automatically deletes each relay log file after
it has executed all events in the file and no longer needs it.
There is no explicit mechanism for deleting relay logs because
the SQL thread takes care of doing so. However,
FLUSH LOGS
rotates relay logs,
which influences when the SQL thread deletes them.
A replication slave server creates two slave status logs in the
form of InnoDB
tables in the
mysql
system schema: the master info log
slave_master_info
, and the relay log info log
slave_relay_log_info
.
The two slave status logs contain information similar to that
shown in the output of the SHOW SLAVE
STATUS
statement, which is discussed in
Section 13.4.2, “SQL Statements for Controlling Slave Servers”. The slave status
logs survive a slave server's shutdown. The next time the
slave starts, it reads the two logs to determine how far it
previously proceeded in reading binary logs from the master and
in processing its own relay logs.
Access privileges for the master info log table should be restricted because it contains the password for connecting to the master. See Section 6.1.2.3, “Passwords and Logging”.
RESET SLAVE
clears the data in
the slave_master_info
and
slave_relay_log_info
tables, with the
exception of replication connection parameters (depending on the
MySQL Server release). For details, see the description for
RESET SLAVE
.
Before MySQL 8.0, to create the slave status logs as tables, it
was necessary to specify
master_info_repository=TABLE
and
relay_log_info_repository=TABLE
,
at server startup. Otherwise, the logs were created as files in
the data directory named master.info
and
relay-log.info
, or with alternative names
and locations specified by the
--master-info-file
option and
relay_log_info_file
system
variable. From MySQL 8.0, creating the slave status logs as
tables is the default, and creating the slave status logs as
files is deprecated. Note that when the slave status logs are
created as tables, they are copied to the recipient during a
cloning operation, but when they are created as files, they are
not copied. For more information, see
Section 17.1.6, “Replication and Binary Logging Options and Variables”.
The mysql.slave_master_info
and
mysql.slave_relay_log_info
tables are created
using the InnoDB
transactional
storage engine. Updates to the relay log info log table are
committed together with the transactions, meaning that the
slave's progress information recorded in that log is always
consistent with what has been applied to the database, even in
the event of an unexpected server halt. The
--relay-log-recovery
option must
be enabled on the slave to guarantee resilience. For more
details, see
Section 17.4.2, “Handling an Unexpected Halt of a Replication Slave”.
One additional slave status log is created primarily for
internal use, and holds status information about worker threads
on a multithreaded replication slave. This slave worker log
includes the names and positions for the relay log file and
master binary log file for each worker thread. If the relay log
info log for the slave is created as a table, which is the
default, the slave worker log is written to the
mysql.slave_worker_info
table. If the relay
log info log is written to a file, the slave worker log is
written to the worker-relay-log.info
file.
For external use, status information for worker threads is
presented in the Performance Schema
replication_applier_status_by_worker
table.
The slave I/O thread updates the master info log. The following
table shows the correspondence between the columns in the
mysql.slave_master_info
table, the columns
displayed by SHOW SLAVE STATUS
,
and the lines in the deprecated master.info
file.
slave_master_info Table Column |
SHOW SLAVE STATUS Column |
master.info File Line |
Description |
---|---|---|---|
Number_of_lines |
[None] | 1 | Number of columns in the table (or lines in the file) |
Master_log_name |
Master_Log_File |
2 | The name of the master binary log currently being read from the master |
Master_log_pos |
Read_Master_Log_Pos |
3 | The current position within the master binary log that has been read from the master |
Host |
Master_Host |
4 | The host name of the master |
User_name |
Master_User |
5 | The user name used to connect to the master |
User_password |
Password (not shown by SHOW SLAVE STATUS ) |
6 | The password used to connect to the master |
Port |
Master_Port |
7 | The network port used to connect to the master |
Connect_retry |
Connect_Retry |
8 | The period (in seconds) that the slave will wait before trying to reconnect to the master |
Enabled_ssl |
Master_SSL_Allowed |
9 | Indicates whether the server supports SSL connections |
Ssl_ca |
Master_SSL_CA_File |
10 | The file used for the Certificate Authority (CA) certificate |
Ssl_capath |
Master_SSL_CA_Path |
11 | The path to the Certificate Authority (CA) certificates |
Ssl_cert |
Master_SSL_Cert |
12 | The name of the SSL certificate file |
Ssl_cipher |
Master_SSL_Cipher |
13 | The list of possible ciphers used in the handshake for the SSL connection |
Ssl_key |
Master_SSL_Key |
14 | The name of the SSL key file |
Ssl_verify_server_cert |
Master_SSL_Verify_Server_Cert |
15 | Whether to verify the server certificate |
Heartbeat |
[None] | 16 | Interval between replication heartbeats, in seconds |
Bind |
Master_Bind |
17 | Which of the slave's network interfaces should be used for connecting to the master |
Ignored_server_ids |
Replicate_Ignore_Server_Ids |
18 | The list of server IDs to be ignored. Note that for
Ignored_server_ids the list of server
IDs is preceded by the total number of server IDs to
ignore. |
Uuid |
Master_UUID |
19 | The master's unique ID |
Retry_count |
Master_Retry_Count |
20 | Maximum number of reconnection attempts permitted |
Ssl_crl |
[None] | 21 | Path to an SSL certificate revocation-list file |
Ssl_crlpath |
[None] | 22 | Path to a directory containing SSL certificate revocation-list files |
Enabled_auto_position |
Auto_position |
23 | If autopositioning is in use or not |
Channel_name |
Channel_name |
24 | The name of the replication channel |
Tls_version |
Master_TLS_Version |
25 | TLS version on master |
Public_key_path |
Master_public_key_path |
26 | Name of RSA public key file |
Get_public_key |
Get_master_public_key |
27 | Whether to request RSA public key from master |
Master_compression_algorithm |
[None] | 28 | Permitted compression algorithms |
Master_zstd_compression_level |
[None] | 29 | zstd compression level |
Tls_ciphersuites |
[None] | 30 | Permitted ciphersuites for TLSv1.3 |
The slave SQL thread updates the relay log info log. The
following table shows the correspondence between the columns in
the mysql.slave_relay_log_info
table, the
columns displayed by SHOW SLAVE
STATUS
, and the lines in the deprecated
relay-log.info
file.
slave_relay_log_info Table Column |
SHOW SLAVE STATUS Column |
Line in relay-log.info File |
Description |
---|---|---|---|
Number_of_lines |
[None] | 1 | Number of columns in the table or lines in the file |
Relay_log_name |
Relay_Log_File |
2 | The name of the current relay log file |
Relay_log_pos |
Relay_Log_Pos |
3 | The current position within the relay log file; events up to this position have been executed on the slave database |
Master_log_name |
Relay_Master_Log_File |
4 | The name of the master binary log file from which the events in the relay log file were read |
Master_log_pos |
Exec_Master_Log_Pos |
5 | The equivalent position within the master's binary log file of events that have already been executed |
Sql_delay |
SQL_Delay |
6 | The number of seconds that the slave must lag the master |
Number_of_workers |
[None] | 7 | The number of slave applier threads for executing replication events (transactions) in parallel |
Id |
[None] | 8 | ID used for internal purposes; currently this is always 1 |
Channel_name |
Channel_name |
9 | The name of the replication channel |
Privilege_checks_username |
[None] | 10 | The user name for the PRIVILEGE_CHECKS_USER account
for the channel |
Privilege_checks_hostname |
[None] | 11 | The host name for the PRIVILEGE_CHECKS_USER account
for the channel |
Require_row_format |
[None] | 12 | Whether the channel accepts only row-based events |
Require_table_primary_key_check |
[None] | 13 | The channel's policy on whether tables must have primary keys for
CREATE TABLE and ALTER
TABLE operations |
When you back up the replication slave's data, ensure that you
back up the mysql.slave_master_info
and
mysql.slave_relay_log_info
tables containing
the slave status logs, because they are needed to resume
replication after you restore the data from the slave. If you
lose the relay log files, but still have the relay log info log,
you can check it to determine how far the SQL thread has
executed in the master binary logs. Then you can use
CHANGE MASTER TO
with the
MASTER_LOG_FILE
and
MASTER_LOG_POS
options to tell the slave to
re-read the binary logs from that point. Of course, this
requires that the binary logs still exist on the master.
If a master server does not write a statement to its binary log, the statement is not replicated. If the server does log the statement, the statement is sent to all slaves and each slave determines whether to execute it or ignore it.
On the master, you can control which databases to log changes for
by using the --binlog-do-db
and
--binlog-ignore-db
options to
control binary logging. For a description of the rules that
servers use in evaluating these options, see
Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”. You should not use
these options to control which databases and tables are
replicated. Instead, use filtering on the slave to control the
events that are executed on the slave.
On the slave side, decisions about whether to execute or ignore
statements received from the master are made according to the
--replicate-*
options that the slave was started
with. (See Section 17.1.6, “Replication and Binary Logging Options and Variables”.) The filters
governed by these options can also be set dynamically using the
CHANGE REPLICATION FILTER
statement. The rules
governing such filters are the same whether they are created on
startup using --replicate-*
options or while the
slave server is running by CHANGE REPLICATION
FILTER
. Note that replication filters cannot be used on
Group Replication-specific channels on a MySQL server instance
that is configured for Group Replication, because filtering
transactions on some servers would make the group unable to reach
agreement on a consistent state.
In the simplest case, when there are no
--replicate-*
options, the slave executes all
statements that it receives from the master. Otherwise, the result
depends on the particular options given.
Database-level options
(--replicate-do-db
,
--replicate-ignore-db
) are checked
first; see Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a
description of this process. If no database-level options are
used, option checking proceeds to any table-level options that may
be in use (see Section 17.2.5.2, “Evaluation of Table-Level Replication Options”,
for a discussion of these). If one or more database-level options
are used but none are matched, the statement is not replicated.
For statements affecting databases only (that is,
CREATE DATABASE
,
DROP DATABASE
, and
ALTER DATABASE
), database-level
options always take precedence over any
--replicate-wild-do-table
options.
In other words, for such statements,
--replicate-wild-do-table
options
are checked if and only if there are no database-level options
that apply.
To make it easier to determine what effect an option set will have, it is recommended that you avoid mixing “do” and “ignore” options, or wildcard and nonwildcard options.
If any --replicate-rewrite-db
options were specified, they are applied before the
--replicate-*
filtering rules are tested.
All replication filtering options follow the same rules for case
sensitivity that apply to names of databases and tables
elsewhere in the MySQL server, including the effects of the
lower_case_table_names
system
variable.
When evaluating replication options, the slave begins by
checking to see whether there are any
--replicate-do-db
or
--replicate-ignore-db
options
that apply. When using
--binlog-do-db
or
--binlog-ignore-db
, the process
is similar, but the options are checked on the master.
The database that is checked for a match depends on the binary
log format of the statement that is being handled. If the
statement has been logged using the row format, the database
where data is to be changed is the database that is checked. If
the statement has been logged using the statement format, the
default database (specified with a
USE
statement) is the database
that is checked.
Only DML statements can be logged using the row format. DDL
statements are always logged as statements, even when
binlog_format=ROW
. All DDL
statements are therefore always filtered according to the
rules for statement-based replication. This means that you
must select the default database explicitly with a
USE
statement in order for a
DDL statement to be applied.
For replication, the steps involved are listed here:
Which logging format is used?
STATEMENT. Test the default database.
ROW. Test the database affected by the changes.
Are there any
--replicate-do-db
options?
Yes. Does the database match any of them?
Yes. Continue to Step 4.
No. Ignore the update and exit.
No. Continue to step 3.
Are there any
--replicate-ignore-db
options?
Yes. Does the database match any of them?
Yes. Ignore the update and exit.
No. Continue to step 4.
No. Continue to step 4.
Proceed to checking the table-level replication options, if there are any. For a description of how these options are checked, see Section 17.2.5.2, “Evaluation of Table-Level Replication Options”.
A statement that is still permitted at this stage is not yet actually executed. The statement is not executed until all table-level options (if any) have also been checked, and the outcome of that process permits execution of the statement.
For binary logging, the steps involved are listed here:
Are there any --binlog-do-db
or --binlog-ignore-db
options?
Yes. Continue to step 2.
No. Log the statement and exit.
Is there a default database (has any database been selected
by USE
)?
Yes. Continue to step 3.
No. Ignore the statement and exit.
There is a default database. Are there any
--binlog-do-db
options?
Yes. Do any of them match the database?
Yes. Log the statement and exit.
No. Ignore the statement and exit.
No. Continue to step 4.
Do any of the
--binlog-ignore-db
options
match the database?
Yes. Ignore the statement and exit.
No. Log the statement and exit.
For statement-based logging, an exception is made in the rules
just given for the CREATE
DATABASE
, ALTER
DATABASE
, and DROP
DATABASE
statements. In those cases, the database
being created, altered, or dropped
replaces the default database when determining whether to log
or ignore updates.
--binlog-do-db
can sometimes mean
“ignore other databases”. For example, when using
statement-based logging, a server running with only
--binlog-do-db=sales
does not
write to the binary log statements for which the default
database differs from sales
. When using
row-based logging with the same option, the server logs only
those updates that change data in sales
.
The slave checks for and evaluates table options only if either of the following two conditions is true:
No matching database options were found.
One or more database options were found, and were evaluated to arrive at an “execute” condition according to the rules described in the previous section (see Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”).
First, as a preliminary condition, the slave checks whether statement-based replication is enabled. If so, and the statement occurs within a stored function, the slave executes the statement and exits. If row-based replication is enabled, the slave does not know whether a statement occurred within a stored function on the master, so this condition does not apply.
For statement-based replication, replication events represent
statements (all changes making up a given event are associated
with a single SQL statement); for row-based replication, each
event represents a change in a single table row (thus a single
statement such as UPDATE mytable SET mycol =
1
may yield many row-based events). When viewed in
terms of events, the process of checking table options is the
same for both row-based and statement-based replication.
Having reached this point, if there are no table options, the
slave simply executes all events. If there are any
--replicate-do-table
or
--replicate-wild-do-table
options, the event must match one of these if it is to be
executed; otherwise, it is ignored. If there are any
--replicate-ignore-table
or
--replicate-wild-ignore-table
options, all events are executed except those that match any of
these options.
The following steps describe this evaluation in more detail. The starting point is the end of the evaluation of the database-level options, as described in Section 17.2.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”.
Are there any table replication options?
Yes. Continue to step 2.
No. Execute the update and exit.
Which logging format is used?
STATEMENT. Carry out the remaining steps for each statement that performs an update.
ROW. Carry out the remaining steps for each update of a table row.
Are there any
--replicate-do-table
options?
Yes. Does the table match any of them?
Yes. Execute the update and exit.
No. Continue to step 4.
No. Continue to step 4.
Are there any
--replicate-ignore-table
options?
Yes. Does the table match any of them?
Yes. Ignore the update and exit.
No. Continue to step 5.
No. Continue to step 5.
Are there any
--replicate-wild-do-table
options?
Yes. Does the table match any of them?
Yes. Execute the update and exit.
No. Continue to step 6.
No. Continue to step 6.
Are there any
--replicate-wild-ignore-table
options?
Yes. Does the table match any of them?
Yes. Ignore the update and exit.
No. Continue to step 7.
No. Continue to step 7.
Is there another table to be tested?
Yes. Go back to step 3.
No. Continue to step 8.
Are there any
--replicate-do-table
or
--replicate-wild-do-table
options?
Yes. Ignore the update and exit.
No. Execute the update and exit.
Statement-based replication stops if a single SQL statement
operates on both a table that is included by a
--replicate-do-table
or
--replicate-wild-do-table
option, and another table that is ignored by a
--replicate-ignore-table
or
--replicate-wild-ignore-table
option. The slave must either execute or ignore the complete
statement (which forms a replication event), and it cannot
logically do this. This also applies to row-based replication
for DDL statements, because DDL statements are always logged
as statements, without regard to the logging format in effect.
The only type of statement that can update both an included
and an ignored table and still be replicated successfully is a
DML statement that has been logged with
binlog_format=ROW
.
If you use a combination of database-level and table-level replication filtering options, the replication slave first accepts or ignores events using the database options, then it evaluates all events permitted by those options according to the table options. This can sometimes lead to results that seem counterintuitive. It is also important to note that the results vary depending on whether the operation is logged using statement-based or row-based binary logging format. If you want to be sure that your replication filters always operate in the same way independently of the binary logging format, which is particularly important if you are using mixed binary logging format, follow the guidance in this topic.
The effect of the replication filtering options differs between
binary logging formats because of the way the database name is
identified. With statement-based format, DML statements are
handled based on the current database, as specified by the
USE
statement. With row-based
format, DML statements are handled based on the database where
the modified table exists. DDL statements are always filtered
based on the current database, as specified by the
USE
statement, regardless of the
binary logging format.
An operation that involves multiple tables can also be affected
differently by replication filtering options depending on the
binary logging format. Operations to watch out for include
transactions involving multi-table
UPDATE
statements, triggers,
cascading foreign keys, stored functions that update multiple
tables, and DML statements that invoke stored functions that
update one or more tables. If these operations update both
filtered-in and filtered-out tables, the results can vary with
the binary logging format.
If you need to guarantee that your replication filters operate
consistently regardless of the binary logging format,
particularly if you are using mixed binary logging format
(binlog_format=MIXED
), use only
table-level replication filtering options, and do not use
database-level replication filtering options. Also, do not use
multi-table DML statements that update both filtered-in and
filtered-out tables.
If you need to use a combination of database-level and table-level replication filters, and want these to operate as consistently as possible, choose one of the following strategies:
If you use row-based binary logging format
(binlog_format=ROW
), for
DDL statements, rely on the
USE
statement to set the
database and do not specify the database name. You can
consider changing to row-based binary logging format for
improved consistency with replication filtering. See
Section 5.4.4.2, “Setting The Binary Log Format” for the conditions that
apply to changing the binary logging format.
If you use statement-based or mixed binary logging format
(binlog_format=STATEMENT
or
MIXED
), for both DML and DDL statements,
rely on the USE
statement and
do not use the database name. Also, do not use multi-table
DML statements that update both filtered-in and filtered-out
tables.
Example 17.7 A --replicate-ignore-db
option and a
--replicate-do-table
option
On the replication master, the following statements are issued:
USE db1; CREATE TABLE t2 LIKE t1; INSERT INTO db2.t3 VALUES (1);
The replication slave has the following replication filtering options set:
replicate-ignore-db = db1 replicate-do-table = db2.t3
The DDL statement CREATE TABLE
creates the table in db1
, as specified by
the preceding USE
statement.
The replication slave filters out this statement according to
its --replicate-ignore-db = db1
option, because db1
is the current
database. This result is the same whatever the binary logging
format is on the replication master. However, the result of
the DML INSERT
statement is
different depending on the binary logging format:
If row-based binary logging format is in use on the
replication master
(binlog_format=ROW
), the
replication slave evaluates the
INSERT
operation using the
database where the table exists, which is named as
db2
. The database-level option
--replicate-ignore-db =
db1
, which is evaluated first, therefore does not
apply. The table-level option
--replicate-do-table =
db2.t3
does apply, so the replication slave
applies the change to table t3
.
If statement-based binary logging format is in use on the
replication master
(binlog_format=STATEMENT
),
the replication slave evaluates the
INSERT
operation using the
default database, which was set by the
USE
statement to
db1
and has not been changed. According
to its database-level
--replicate-ignore-db = db1
option, it therefore ignores the operation and does not
apply the change to table t3
. The
table-level option
--replicate-do-table =
db2.t3
is not checked, because the statement
already matched a database-level option and was ignored.
If the --replicate-ignore-db =
db1
option on the slave is necessary, and the use of
statement-based (or mixed) binary logging format on the master
is also necessary, the results can be made consistent by
omitting the database name from the
INSERT
statement and relying on
a USE
statement instead, as
follows:
USE db1; CREATE TABLE t2 LIKE t1; USE db2; INSERT INTO t3 VALUES (1);
In this case, the replication slave always evaluates the
INSERT
statement based on the
database db2
. Whether the operation is
logged in statement-based or row-based binary format, the
results remain the same.
This section explains how to work with replication filters when multiple replication channels exist, for example in a multi-source replication topology. Before MySQL 8.0, replication filters were global, so filters were applied to all replication channels. From MySQL 8.0, replication filters can be global or channel specific, enabling you to configure multi-source replication slaves with replication filters on specific replication channels. Channel specific replication filters are particularly useful in a multi-source replication topology when the same database or table is present on multiple masters, and the slave is only required to replicate it from one master.
For instructions to set up replication channels, see Section 17.1.4, “MySQL Multi-Source Replication”, and for more information on how they work, see Section 17.2.3, “Replication Channels”.
Each channel on a multi-source replication slave must replicate from a different master. You cannot set up multiple replication channels from a single slave to a single master, even if you use replication filters to select different data to replicate on each channel. This is because the server IDs of replication slaves must be unique in a replication topology. The master distinguishes slaves only by their server IDs, not by the names of the replication channels, so it cannot recognize different replication channels from the same slave.
On a MySQL server instance that is configured for Group
Replication, channel specific replication filters can be used
on replication channels that are not directly involved with
Group Replication, such as where a group member also acts as a
replication slave to a master that is outside the group. They
cannot be used on the
group_replication_applier
or
group_replication_recovery
channels.
Filtering on these channels would make the group unable to
reach agreement on a consistent state.
When multiple replication channels exist, for example in a multi-source replication topology, replication filters are applied as follows:
Any global replication filter specified is added to the
global replication filters of the filter type
(do_db
,
do_ignore_table
, and so on).
Any channel specific replication filter adds the filter to the specified channel’s replication filters for the specified filter type.
Each slave replication channel copies global replication filters to its channel specific replication filters if no channel specific replication filter of this type is configured.
Each channel uses its channel specific replication filters to filter the replication stream.
The syntax to create channel specific replication filters
extends the existing SQL statements and command options. When
a replication channel is not specified the global replication
filter is configured to ensure backwards compatibility. The
CHANGE REPLICATION FILTER
statement supports the FOR CHANNEL
clause
to configure channel specific filters online. The
--replicate-*
command options to configure
filters can specify a replication channel using the form
--replicate-
.
For example, suppose channels filter_type
=channel_name
:filter_details
channel_1
and
channel_2
exist before the server starts,
starting the slave with the command line options
--replicate-do-db=db1
--replicate-do-db=channel_1:db2
--replicate-do-db=db3
--replicate-ignore-db=db4
--replicate-ignore-db=channel_2:db5
would result in:
Global replication filters: do_db=db1,db3, ignore_db=db4
Channel specific filters on channel_1: do_db=db2 ignore_db=db4
Channel specific filters on channel_2: do_db=db1,db3 ignore_db=db5
To monitor the replication filters in such a setup use the
replication_applier_global_filters
and replication_applier_filters
tables.
The replication filter related command options can take an
optional channel
followed by a
colon, followed by the filter specification. The first colon
is interpreted as a separator, subsequent colons are
interpreted as literal colons. The following command options
support channel specific replication filters using this
format:
--replicate-do-db=
channel
:database_id
--replicate-ignore-db=
channel
:database_id
--replicate-do-table=
channel
:table_id
--replicate-ignore-table=
channel
:table_id
--replicate-rewrite-db=
channel
:db1-db2
--replicate-wild-do-table=
channel
:table
regexid
--replicate-wild-ignore-table=
channel
:table
regexid
If you use a colon but do not specify a
channel
for the filter option, for
example
--replicate-do-db=:
,
the option configures the replication filter for the default
replication channel. The default replication channel is the
replication channel which always exists once replication has
been started, and differs from multi-source replication
channels which you create manually. When neither the colon nor
a database_id
channel
is specified the option
configures the global replication filters, for example
--replicate-do-db=
configures the global
database_id
--replicate-do-db
filter.
If you configure multiple
rewrite-db=
options with the same from_name
->to_name
from_name
database, all filters are added together (put into the
rewrite_do
list) and the first one takes
effect.
In addition to the --replicate-*
options,
replication filters can be configured using the
CHANGE REPLICATION FILTER
statement. This removes the need to restart the server, but
the slave applier thread must be stopped while making the
change. To make this statement apply the filter to a specific
channel, use the FOR CHANNEL
clause. For
example:
channel
CHANGE REPLICATION FILTER REPLICATE_DO_DB=(db1) FOR CHANNEL channel_1;
When a FOR CHANNEL
clause is provided, the
statement acts on the specified channel's replication
filters. If multiple types of filters
(do_db
, do_ignore_table
,
wild_do_table
, and so on) are specified,
only the specified filter types are replaced by the statement.
In a replication topology with multiple channels, for example
on a multi-source replication slave, when no FOR
CHANNEL
clause is provided, the statement acts on
the global replication filters and all channels’ replication
filters, using a similar logic as the FOR
CHANNEL
case. For more information see
Section 13.4.2.2, “CHANGE REPLICATION FILTER Statement”.
When channel specific replication filters have been
configured, you can remove the filter by issuing an empty
filter type statement. For example to remove all
REPLICATE_REWRITE_DB
filters from a
replication channel named channel_1
issue:
CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=() FOR CHANNEL channel_1;
Any REPLICATE_REWRITE_DB
filters previously
configured, using either command options or
CHANGE REPLICATION FILTER
, are
removed.
The RESET SLAVE
ALL
statement removes channel specific replication
filters that were set on channels deleted by the statement.
When the deleted channel or channels are recreated, any global
replication filters specified for the slave are copied to
them, and no channel specific replication filters are applied.
To protect against unauthorized access to data that is stored on and transferred between replication masters and slaves, set up all the servers involved using the security measures that you would choose for any MySQL instance in your installation, as described in Chapter 6, Security. In addition, for servers in a replication topology, consider implementing the following security measures:
Set up masters and slaves to use encrypted connections to
transfer the binary log, which protects this data in motion.
Encryption for these connections must be activated using a
CHANGE MASTER TO
statement, in
addition to setting up the servers to support encrypted network
connections. See
Section 17.3.1, “Setting Up Replication to Use Encrypted Connections”.
Encrypt the binary log files and relay log files on masters and
slaves, which protects this data at rest, and also any data in
use in the binary log cache. Binary log encryption is activated
using the binlog_encryption
system variable. See
Section 17.3.2, “Encrypting Binary Log Files and Relay Log Files”.
Apply privilege checks to replication appliers, which help to
secure replication channels against the unauthorized or
accidental use of privileged or unwanted operations. Privilege
checks are implemented by setting up a
PRIVILEGE_CHECKS_USER
account, which MySQL
uses to verify that you have authorized each specific
transaction for that channel. See
Section 17.3.3, “Replication Privilege Checks”.
For Group Replication, binary log encryption and privilege checks can be used as a security measure on replication group members. You should also consider encrypting the connections between group members, comprising group communication connections and distributed recovery connections, and applying IP address whitelisting to exclude untrusted hosts. For information on these security measures specific to Group Replication, see Section 18.5, “Group Replication Security”.
To use an encrypted connection for the transfer of the binary log required during replication, both the master and the slave servers must support encrypted network connections. If either server does not support encrypted connections (because it has not been compiled or configured for them), replication through an encrypted connection is not possible.
Setting up encrypted connections for replication is similar to doing so for client/server connections. You must obtain (or create) a suitable security certificate that you can use on the master, and a similar certificate (from the same certificate authority) on each slave. You must also obtain suitable key files.
For more information on setting up a server and client for encrypted connections, see Section 6.3.1, “Configuring MySQL to Use Encrypted Connections”.
To enable encrypted connections on the master, you must create or
obtain suitable certificate and key files, and then add the
following configuration parameters to the master's configuration
within the [mysqld]
section of the master's
my.cnf
file, changing the file names as
necessary:
[mysqld] ssl_ca=cacert.pem ssl_cert=server-cert.pem ssl_key=server-key.pem
The paths to the files may be relative or absolute; we recommend that you always use complete paths for this purpose.
The configuration parameters are as follows:
ssl_ca
: The path name of the
Certificate Authority (CA) certificate file.
(ssl_capath
is similar but
specifies the path name of a directory of CA certificate
files.)
ssl_cert
: The path name of
the server public key certificate file. This certificate can
be sent to the client and authenticated against the CA
certificate that it has.
ssl_key
: The path name of the
server private key file.
To enable encrypted connections on the slave, use the
CHANGE MASTER TO
statement. You can
either name the slave certificate and SSL private key files
required for the encrypted connection in the
[client]
section of the slave's
my.cnf
file, or you can explicitly specify
that information using the CHANGE MASTER
TO
statement. For more information on the
CHANGE MASTER TO
statement, see
Section 13.4.2.1, “CHANGE MASTER TO Statement”.
To name the slave certificate and key files using an option
file, add the following lines to the
[client]
section of the slave's
my.cnf
file, changing the file names as
necessary:
[client] ssl-ca=cacert.pem ssl-cert=client-cert.pem ssl-key=client-key.pem
Restart the slave server, using the
--skip-slave-start
option to
prevent the slave from connecting to the master. Use
CHANGE MASTER TO
to specify the
master configuration, and add the
MASTER_SSL
option to connect using
encryption:
mysql>CHANGE MASTER TO
->MASTER_HOST='master_hostname',
->MASTER_USER='repl',
->MASTER_PASSWORD='
->password
',MASTER_SSL=1;
Setting MASTER_SSL=1
for a replication
connection and then setting no further
MASTER_SSL_
options corresponds to setting
xxx
--ssl-mode=REQUIRED
for the client, as
described in Command Options for Encrypted Connections.
With MASTER_SSL=1
, the connection attempt
only succeeds if an encrypted connection can be established. A
replication connection does not fall back to an unencrypted
connection, so there is no setting corresponding to the
--ssl-mode=PREFERRED
setting for
replication. If MASTER_SSL=0
is set, this
corresponds to --ssl-mode=DISABLED
.
To name the slave certificate and SSL private key files using
the CHANGE MASTER TO
statement,
if you did not do this in the slave's
my.cnf
file, add the appropriate
MASTER_SSL_
options:
xxx
->MASTER_SSL_CA = 'ca_file_name',
->MASTER_SSL_CAPATH = 'ca_directory_name',
->MASTER_SSL_CERT = 'cert_file_name',
->MASTER_SSL_KEY = 'key_file_name',
These options correspond to the
--ssl-
options with the same names, as described in
Command Options for Encrypted Connections. For these
options to take effect, xxx
MASTER_SSL=1
must
also be set. For a replication connection, specifying a value
for either of MASTER_SSL_CA
or
MASTER_SSL_CAPATH
, or specifying these
options in the slave's my.cnf
file,
corresponds to setting
--ssl-mode=VERIFY_CA
. The connection
attempt only succeeds if a valid matching Certificate
Authority (CA) certificate is found using the specified
information.
To activate host name identity verification, add the
MASTER_SSL_VERIFY_SERVER_CERT
option:
-> MASTER_SSL_VERIFY_SERVER_CERT=1,
This option corresponds to the
--ssl-verify-server-cert
option, which was
deprecated from MySQL 5.7 and removed in MySQL 8.0. For a
replication connection, specifying
MASTER_SSL_VERIFY_SERVER_CERT=1
corresponds
to setting --ssl-mode=VERIFY_IDENTITY
, as
described in Command Options for Encrypted Connections.
For this option to take effect,
MASTER_SSL=1
must also be set. Host name
identity verification does not work with self-signed
certificates.
To activate certificate revocation list (CRL) checks, add the
MASTER_SSL_CRL
or
MASTER_SSL_CRLPATH
option:
->MASTER_SSL_CRL = 'crl_file_name',
->MASTER_SSL_CRLPATH = 'crl_directory_name',
These options correspond to the
--ssl-
options with the same names, as described in
Command Options for Encrypted Connections. If they are
not specified, no CRL checking takes place.
xxx
To specify lists of ciphers, ciphersuites, and encryption
protocols permitted by the slave for the replication
connection, use the MASTER_SSL_CIPHER
,
MASTER_TLS_VERSION
, and
MASTER_TLS_CIPHERSUITES
options:
->MASTER_SSL_CIPHER = 'cipher_list',
->MASTER_TLS_VERSION = 'protocol_list',
->MASTER_TLS_CIPHERSUITES = 'ciphersuite_list',
The MASTER_SSL_CIPHER
option specifies
a colon-separated list of one or more ciphers permitted by
the slave for the replication connection.
The MASTER_TLS_VERSION
option specifies
a comma-separated list of the TLS encryption protocols
permitted by the slave for the replication connection, in
a format like that for the
tls_version
server system
variable. The connection procedure negotiates the use of
the highest TLS version that both the master and the slave
permit. To be able to connect, the slave must have at
least one TLS version in common with the master.
The MASTER_TLS_CIPHERSUITES
option
(available from MySQL 8.0.19) specifies a colon-separated
list of one or more ciphersuites that are permitted by the
slave for the replication connection if TLSv1.3 is used
for the connection. If this option is set to
NULL
when TLSv1.3 is used (which is the
default if you do not set the option), the ciphersuites
that are enabled by default are allowed. If you set the
option to an empty string, no ciphersuites are allowed,
and TLSv1.3 will therefore not be used.
The protocols, ciphers, and ciphersuites that you can specify in these lists depend on the SSL library used to compile MySQL. For information about the formats, the permitted values, and the defaults if you do not specify the options, see Section 6.3.2, “Encrypted Connection TLS Protocols and Ciphers”.
In MySQL 8.0.16 through 8.0.18, MySQL supports TLSv1.3, but
the MASTER_TLS_CIPHERSUITES
option is not
available. In these releases, if TLSv1.3 is used for
connections between a replication master and slave, the
replication master must permit the use of at least one
TLSv1.3 ciphersuite that is enabled by default. From MySQL
8.0.19, you can use the option to specify any selection of
ciphersuites, including only non-default ciphersuites if you
want.
After the master information has been updated, start the slave replication process:
mysql> START SLAVE;
You can use the SHOW SLAVE
STATUS
statement to confirm that an encrypted
connection was established successfully.
Requiring encrypted connections on the slave does not ensure
that the master requires encrypted connections from slaves. If
you want to ensure that the master only accepts replication
slaves that connect using encrypted connections, create a
replication user account on the master using the
REQUIRE SSL
option, then grant that user
the REPLICATION SLAVE
privilege. For example:
mysql>CREATE USER 'repl'@'%.example.com' IDENTIFIED BY '
->password
'REQUIRE SSL;
mysql>GRANT REPLICATION SLAVE ON *.*
->TO 'repl'@'%.example.com';
If you have an existing replication user account on the
master, you can add REQUIRE SSL
to it with
this statement:
mysql> ALTER USER 'repl'@'%.example.com' REQUIRE SSL;
From MySQL 8.0.14, binary log files and relay log files can be encrypted, helping to protect these files and the potentially sensitive data contained in them from being misused by outside attackers, and also from unauthorized viewing by users of the operating system where they are stored. The encryption algorithm used for the files, the AES (Advanced Encryption Standard) cipher algorithm, is built in to MySQL Server and cannot be configured.
You enable this encryption on a MySQL server by setting the
binlog_encryption
system variable
to ON
. OFF
is the default.
The system variable sets encryption on for binary log files and
relay log files. Binary logging does not need to be enabled on the
server to enable encryption, so you can encrypt the relay log
files on a slave that has no binary log. To use encryption, a
keyring plugin must be installed and configured to supply MySQL
Server's keyring service. For instructions to do this, see
Section 6.4.4, “The MySQL Keyring”. Any supported keyring plugin can be
used to store binary log encryption keys.
When you first start the server with encryption enabled, a new binary log encryption key is generated before the binary log and relay logs are initialized. This key is used to encrypt a file password for each binary log file (if the server has binary logging enabled) and relay log file (if the server has replication channels), and further keys generated from the file passwords are used to encrypt the data in the files. The binary log encryption key that is currently in use on the server is called the binary log master key. The two tier encryption key architecture means that the binary log master key can be rotated (replaced by a new master key) as required, and only the file password for each file needs to be re-encrypted with the new master key, not the whole file. Relay log files are encrypted for all channels, including new channels that are created after encryption is activated. The binary log index file and relay log index file are never encrypted.
If you activate encryption while the server is running, a new binary log encryption key is generated at that time. The exception is if encryption was active previously on the server and was then disabled, in which case the binary log encryption key that was in use before is used again. The binary log file and relay log files are rotated immediately, and file passwords for the new files and all subsequent binary log files and relay log files are encrypted using this binary log encryption key. Existing binary log files and relay log files still present on the server are not encrypted, but you can purge them if they are no longer needed.
If you deactivate encryption by changing the
binlog_encryption
system variable
to OFF
, the binary log file and relay log files
are rotated immediately and all subsequent logging is unencrypted.
Previously encrypted files are not automatically decrypted, but
the server is still able to read them. The
BINLOG_ENCRYPTION_ADMIN
privilege
is required to activate or deactivate encryption while the server
is running.
Encrypted and unencrypted binary log files can be distinguished
using the magic number at the start of the file header for
encrypted log files (0xFD62696E
), which differs
from that used for unencrypted log files
(0xFE62696E
). The SHOW
BINARY LOGS
statement shows whether each binary log file
is encrypted or unencrypted.
When binary log files have been encrypted,
mysqlbinlog cannot read them directly, but can
read them from the server using the
--read-from-remote-server
option. From MySQL 8.0.14, mysqlbinlog returns
a suitable error if you attempt to read an encrypted binary log
file directly, but older versions of
mysqlbinlog do not recognise the file as a
binary log file at all. If you back up encrypted binary log files
using mysqlbinlog, note that the copies of the
files that are generated using mysqlbinlog are
stored in an unencrypted format.
Binary log encryption can be combined with binary log transaction compression (available as of MySQL 8.0.20). For more information on binary log transaction compression, see Section 5.4.4.5, “Binary Log Transaction Compression”.
When binary log encryption is active for a MySQL server instance, the encryption coverage is as follows:
Data at rest that is written to the binary log files and relay log files is encrypted from the point in time where encryption is started, using the two tier encryption architecture described above. Existing binary log files and relay log files that were present on the server when you started encryption are not encrypted. You can purge these files when they are no longer needed.
Data in motion in the replication event stream, which is sent to MySQL clients including mysqlbinlog, is decrypted for transmission, and should therefore be protected in transit by the use of connection encryption (see Section 6.3, “Using Encrypted Connections” and Section 17.3.1, “Setting Up Replication to Use Encrypted Connections”).
Data in use that is held in the binary log transaction and statement caches during a transaction is in unencrypted format in the memory buffer that stores the cache. The data is written to a temporary file on disk if it exceeds the space available in the memory buffer. From MySQL 8.0.17, when binary log encryption is active on the server, temporary files used to hold the binary log cache are encrypted using AES-CTR (AES Counter mode) for stream encryption. Because the temporary files are volatile and tied to a single process, they are encrypted using single-tier encryption, using a randomly generated file password and initialization vector that exist only in memory and are never stored on disk or in the keyring. After each transaction is committed, the binary log cache is reset: the memory buffer is cleared, any temporary file used to hold the binary log cache is truncated, and a new file password and initialization vector are randomly generated for use with the next transaction. This reset also takes place when the server is restarted after a normal shutdown or an unexpected halt.
If you use LOAD DATA
when
binlog_format=STATEMENT
is
set, which is not recommended as the statement is considered
unsafe for statement-based replication, a temporary file
containing the data is created on the replication slave where
the changes are applied. These temporary files are not
encrypted when binary log encryption is active on the server.
Use row-based or mixed binary logging format instead, which do
not create the temporary files.
The binary log encryption keys used to encrypt the file passwords for the log files are 256-bit keys that are generated specifically for each MySQL server instance using MySQL Server's keyring service (see Section 6.4.4, “The MySQL Keyring”). The keyring service handles the creation, retrieval, and deletion of the binary log encryption keys. A server instance only creates and removes keys generated for itself, but it can read keys generated for other instances if they are stored in the keyring, as in the case of a server instance that has been cloned by file copying.
The binary log encryption keys for a MySQL server instance must be included in your backup and recovery procedures, because if the keys required to decrypt the file passwords for current and retained binary log files or relay log files are lost, it might not be possible to start the server.
The format of binary log encryption keys in the keyring is as follows:
MySQLReplicationKey_{UUID}_{SEQ_NO}
For example:
MySQLReplicationKey_00508583-b5ce-11e8-a6a5-0010e0734796_1
{UUID}
is the true UUID generated by the
MySQL server (the value of the
server_uuid
system variable).
{SEQ_NO}
is the sequence number for the
binary log encryption key, which is incremented by 1 for each
new key that is generated on the server.
The binary log encryption key that is currently in use on the server is called the binary log master key. The sequence number for the current binary log master key is stored in the keyring. The binary log master key is used to encrypt each new log file's file password, which is a randomly generated 32-byte file password specific to the log file that is used to encrypt the file data. The file password is encrypted using AES-CBC (AES Cipher Block Chaining mode) with the 256-bit binary log encryption key and a random initialization vector (IV), and is stored in the log file's file header. The file data is encrypted using AES-CTR (AES Counter mode) with a 256-bit key generated from the file password and a nonce also generated from the file password. It is technically possible to decrypt an encrypted file offline, if the binary log encryption key used to encrypt the file password is known, by using tools available in the OpenSSL cryptography toolkit.
If you use file copying to clone a MySQL server instance that has encryption active so its binary log files and relay log files are encrypted, ensure that the keyring is also copied, so that the clone server can read the binary log encryption keys from the source server. When encryption is activated on the clone server (either at startup or subsequently), the clone server recognizes that the binary log encryption keys used with the copied files include the generated UUID of the source server. It automatically generates a new binary log encryption key using its own generated UUID, and uses this to encrypt the file passwords for subsequent binary log files and relay log files. The copied files continue to be read using the source server's keys.
When binary log encryption is enabled, you can rotate the binary
log master key at any time while the server is running by
issuing ALTER INSTANCE ROTATE BINLOG MASTER
KEY
. When the binary log master key is rotated
manually using this statement, the passwords for the new and
subsequent files are encrypted using the new binary log master
key, and also the file passwords for existing encrypted binary
log files and relay log files are re-encrypted using the new
binary log master key, so the encryption is renewed completely.
You can rotate the binary log master key on a regular basis to
comply with your organization's security policy, and also if you
suspect that the current or any of the previous binary log
master keys might have been compromised.
When you rotate the binary log master key manually, MySQL Server takes the following actions in sequence:
A new binary log encryption key is generated with the next available sequence number, stored on the keyring, and used as the new binary log master key.
The binary log and relay log files are rotated on all channels.
The new binary log master key is used to encrypt the file passwords for the new binary log and relay log files, and subsequent files until the key is changed again.
The file passwords for existing encrypted binary log files and relay log files on the server are re-encrypted in turn using the new binary log master key, starting with the most recent files. Any unencrypted files are skipped.
Binary log encryption keys that are no longer in use for any files after the re-encryption process are removed from the keyring.
The BINLOG_ENCRYPTION_ADMIN
privilege is required to issue ALTER
INSTANCE ROTATE BINLOG MASTER KEY
, and the statement
cannot be used if the
binlog_encryption
system
variable is set to OFF
.
As the final step of the binary log master key rotation process,
all binary log encryption keys that no longer apply to any
retained binary log files or relay log files are cleaned up from
the keyring. If a retained binary log file or relay log file
cannot be initialized for re-encryption, the relevant binary log
encryption keys are not deleted in case the files can be
recovered in the future. For example, this might be the case if
a file listed in a binary log index file is currently
unreadable, or if a channel fails to initialize. If the server
UUID changes, for example because a backup created using MySQL
Enterprise Backup is used to set up a new replication slave,
issuing ALTER INSTANCE ROTATE BINLOG MASTER
KEY
on the new server does not delete any earlier
binary log encryption keys that include the original server
UUID.
If any of the first four steps of the binary log master key
rotation process cannot be completed correctly, an error message
is issued explaining the situation and the consequences for the
encryption status of the binary log files and relay log files.
Files that were previously encrypted are always left in an
encrypted state, but their file passwords might still be
encrypted using an old binary log master key. If you see these
errors, first retry the process by issuing
ALTER INSTANCE ROTATE BINLOG MASTER
KEY
again. Then investigate the status of individual
files to see what is blocking the process, especially if you
suspect that the current or any of the previous binary log
master keys might have been compromised.
If the final step of the binary log master key rotation process
cannot be completed correctly, a warning message is issued
explaining the situation. The warning message identifies whether
the process could not clean up the auxiliary keys in the keyring
for rotating the binary log master key, or could not clean up
unused binary log encryption keys. You can choose to ignore the
message as the keys are auxiliary keys or no longer in use, or
you can issue ALTER INSTANCE ROTATE BINLOG
MASTER KEY
again to retry the process.
If the server stops and is restarted with binary log encryption
still set to ON
during the binary log master
key rotation process, new binary log files and relay log files
after the restart are encrypted using the new binary log master
key. However, the re-encryption of existing files is not
continued, so files that did not get re-encrypted before the
server stopped are left encrypted using the previous binary log
master key. To complete re-encryption and clean up unused binary
log encryption keys, issue ALTER INSTANCE
ROTATE BINLOG MASTER KEY
again after the restart.
ALTER INSTANCE ROTATE BINLOG MASTER
KEY
actions are not written to the binary log and are
not executed on replication slaves. Binary log master key
rotation can therefore be carried out in replication
environments including a mix of MySQL versions. To schedule
regular rotation of the binary log master key on all applicable
master and slave servers, you can enable the MySQL Event
Scheduler on each server and issue the
ALTER INSTANCE ROTATE BINLOG MASTER
KEY
statement using a CREATE
EVENT
statement. If you rotate the binary log master
key because you suspect that the current or any of the previous
binary log master keys might have been compromised, issue the
statement on every applicable master and slave server. Issuing
the statement on individual servers ensures that you can verify
immediate compliance, even in the case of slaves that are
lagging, belong to multiple replication topologies, or are not
currently active in the replication topology but have binary log
and relay log files.
The
binlog_rotate_encryption_master_key_at_startup
system variable controls whether the binary log master key is
automatically rotated when the server is restarted. If this
system variable is set to ON
, a new binary
log encryption key is generated and used as the new binary log
master key whenever the server is restarted. If it is set to
OFF
, which is the default, the existing
binary log master key is used again after the restart. When the
binary log master key is rotated at startup, the file passwords
for the new binary log and relay log files are encrypted using
the new key. The file passwords for the existing encrypted
binary log files and relay log files are not re-encrypted, so
they remain encrypted using the old key, which remains available
on the keyring.
By default, MySQL replication (including Group Replication) does
not carry out privilege checks when transactions that were already
accepted by another server are applied on a replication slave or
group member. From MySQL 8.0.18, you can create a user account
with the appropriate privileges to apply the transactions that are
normally replicated on a channel, and specify this as the
PRIVILEGE_CHECKS_USER
account for the
replication applier, using a CHANGE MASTER
TO
statement. MySQL then checks each transaction against
the user account's privileges to verify that you have authorized
the operation for that channel. The account can also be safely
used by an administrator to apply or reapply transactions from
mysqlbinlog output, for example to recover from
a replication error on the channel.
The use of a PRIVILEGE_CHECKS_USER
account
helps secure a replication channel against the unauthorized or
accidental use of privileged or unwanted operations. The
PRIVILEGE_CHECKS_USER
account provides an
additional layer of security in situations such as these:
You are replicating between a server instance on your organization's network, and a server instance on another network, such as an instance supplied by a cloud service provider.
You want to have multiple on-premise or off-site deployments administered as separate units, without giving one administrator account privileges on all the deployments.
You want to have an administrator account that enables an administrator to perform only operations that are directly relevant to the replication channel and the databases it replicates, rather than having wide privileges on the server instance.
You can increase the security of a replication channel where
privilege checks are applied by adding one or both of these
options to the CHANGE MASTER TO
statement when you specify the
PRIVILEGE_CHECKS_USER
account for the channel:
The REQUIRE_ROW_FORMAT
option (available
from MySQL 8.0.19) makes the replication channel accept only
row-based replication events. When
REQUIRE_ROW_FORMAT
is set, you must use
row-based binary logging
(binlog_format=ROW
) on the
master. In MySQL 8.0.18, REQUIRE_ROW_FORMAT
is not available, but the use of row-based binary logging for
secured replication channels is still strongly recommended.
With statement-based binary logging, some administrator-level
privileges might be required for the
PRIVILEGE_CHECKS_USER
account to execute
transactions successfully.
The REQUIRE_TABLE_PRIMARY_KEY_CHECK
option
(available from MySQL 8.0.20) makes the replication channel
use its own policy for primary key checks. Setting
ON
means that primary keys are always
required, and setting OFF
means that
primary keys are never required. The default setting,
STREAM
, sets the session value of the
sql_require_primary_key
system variable using the value that is replicated from the
master for each transaction. When
PRIVILEGE_CHECKS_USER
is set, setting
REQUIRE_TABLE_PRIMARY_KEY_CHECK
to either
ON
or OFF
means that the
user account does not need session administration level
privileges to set restricted session variables, which are
required to change the value of
sql_require_primary_key
. It
also normalizes the behavior across replication channels for
different masters.
You grant the REPLICATION_APPLIER
privilege to enable a user account to appear as the
PRIVILEGE_CHECKS_USER
for a replication applier
thread, and to execute the internal-use
BINLOG
statements used by
mysqlbinlog. The user name and host name for the
PRIVILEGE_CHECKS_USER
account must follow the
syntax described in Section 6.2.4, “Specifying Account Names”, and the user
must not be an anonymous user (with a blank user name) or the
CURRENT_USER
. To create a new account, use
CREATE USER
. To grant this account
the REPLICATION_APPLIER
privilege,
use the GRANT
statement. For
example, to create a user account priv_repl
,
which can be used manually by an administrator from any host in
the example.com
domain, and requires an
encrypted connection, issue the following statements:
mysql> SET sql_log_bin = 0;
mysql> CREATE USER 'priv_repl'@'%.example.com' IDENTIFIED BY 'password
' REQUIRE SSL;
mysql> GRANT REPLICATION_APPLIER ON *.* TO 'priv_repl'@'%.example.com';
mysql> SET sql_log_bin = 1;
The SET sql_log_bin
statements are used so that
the account management statements are not added to the binary log
and sent to the replication channels (see
Section 13.4.1.3, “SET sql_log_bin Statement”).
The caching_sha2_password
authentication
plugin is the default for new users created from MySQL 8.0 (for
details, see
Section 6.4.1.2, “Caching SHA-2 Pluggable Authentication”). To
connect to a server using a user account that authenticates with
this plugin, you must either set up an encrypted connection as
described in
Section 17.3.1, “Setting Up Replication to Use Encrypted Connections”,
or enable the unencrypted connection to support password
exchange using an RSA key pair.
After setting up the user account, use the
GRANT
statement to grant additional
privileges to enable the user account to make the database changes
that you expect the applier thread to carry out, such as updating
specific tables held on the server. These same privileges enable
an administrator to use the account if they need to execute any of
those transactions manually on the replication channel. If an
unexpected operation is attempted for which you did not grant the
appropriate privileges, the operation is disallowed and the
replication applier thread stops with an error.
Section 17.3.3.1, “Privileges For The Replication PRIVILEGE_CHECKS_USER Account” explains
what additional privileges the account needs. For example, to
grant the priv_repl
user account the
INSERT
privilege to add rows to the
cust
table in db1
, issue the
following statement:
mysql> GRANT INSERT ON db1.cust TO 'priv_repl'@'%.example.com';
You assign the PRIVILEGE_CHECKS_USER
account
for a replication channel using a CHANGE
MASTER TO
statement. The use of row-based binary logging
is strongly recommended when
PRIVILEGE_CHECKS_USER
is set, and from MySQL
8.0.19 you can use the statement to set
REQUIRE_ROW_FORMAT
to enforce this. If
replication is running, issue STOP
SLAVE
before the CHANGE MASTER
TO
statement, and START
SLAVE
after it. For example, to start privilege checks
on the channel channel_1
on a running
replication slave, issue the following statements:
mysql> STOP SLAVE FOR CHANNEL 'channel_1'; mysql> CHANGE MASTER TO PRIVILEGE_CHECKS_USER = 'priv_repl'@'%.example.com', REQUIRE_ROW_FORMAT = 1 FOR CHANNEL 'channel_1'; mysql> START SLAVE FOR CHANNEL 'channel_1';
When you restart the replication channel, the privilege checks are
applied from that point on. If you do not specify a channel and no
other channels exist, the statement is applied to the default
channel. The user name and host name for the
PRIVILEGE_CHECKS_USER
account for a channel are
shown in the Performance Schema
replication_applier_configuration
table, where they are properly escaped so they can be copied
directly into SQL statements to execute individual transactions.
When REQUIRE_ROW_FORMAT
is set for a
replication channel, the replication applier does not create or
drop temporary tables, and so does not set the
pseudo_thread_id
session system
variable. It does not execute LOAD DATA INFILE
instructions, and so does not attempt file operations to access or
delete the temporary files associated with data loads (logged as a
Format_description_log_event
). It does not
execute INTVAR
, RAND
, and
USER_VAR
events, which are used to reproduce
the client's connection state for statement-based replication. (An
exception is USER_VAR
events that are
associated with DDL queries, which are executed.) It does not
execute any statements that are logged within DML transactions. If
the replication applier detects any of these types of event while
attempting to queue or apply a transaction, the event is not
applied, and replication stops with an error.
You can set REQUIRE_ROW_FORMAT
for a
replication channel whether or not you set a
PRIVILEGE_CHECKS_USER
account. The restrictions
implemented when you set this option increase the security of the
replication channel even without privilege checks. You can also
specify the --require-row-format
option when you
use mysqlbinlog, to enforce row-based
replication events in mysqlbinlog output.
Security Context.
By default, when a replication applier thread is started with a
user account specified as the
PRIVILEGE_CHECKS_USER
, the security context
is created using default roles, or with all roles if
activate_all_roles_on_login
is
set to ON
.
You can use roles to supply a general privilege set to accounts
that are used as PRIVILEGE_CHECKS_USER
accounts, as in the following example. Here, instead of granting
the INSERT
privilege for the
db1.cust
table directly to a user account as in
the earlier example, this privilege is granted to the role
priv_repl_role
along with the
REPLICATION_APPLIER
privilege. The
role is then used to grant the privilege set to two user accounts,
both of which can now be used as
PRIVILEGE_CHECKS_USER
accounts:
mysql> SET sql_log_bin = 0; mysql> CREATE USER 'priv_repa'@'%.example.com' IDENTIFIED BY 'password
' REQUIRE SSL; mysql> CREATE USER 'priv_repb'@'%.example.com' IDENTIFIED BY 'password
' REQUIRE SSL; mysql> CREATE ROLE 'priv_repl_role'; mysql> GRANT REPLICATION_APPLIER TO 'priv_repl_role'; mysql> GRANT INSERT ON db1.cust TO 'priv_repl_role'; mysql> GRANT 'priv_repl_role' TO 'priv_repa'@'%.example.com', 'priv_repb'@'%.example.com'; mysql> SET DEFAULT ROLE 'priv_repl_role' TO 'priv_repa'@'%.example.com', 'priv_repb'@'%.example.com'; mysql> SET sql_log_bin = 1;
Be aware that when the replication applier thread creates the
security context, it checks the privileges for the
PRIVILEGE_CHECKS_USER
account, but does not
carry out password validation, and does not carry out checks
relating to account management, such as checking whether the
account is locked. The security context that is created remains
unchanged for the lifetime of the replication applier thread.
Limitation.
In MySQL 8.0.18 only, if the slave mysqld is
restarted immediately after issuing a RESET
SLAVE
statement (due to a server crash or deliberate
restart), the PRIVILEGE_CHECKS_USER
account
setting, which is held in the
mysql.slave_relay_log_info
table, is lost and
must be respecified. When you use privilege checks in that
release, always verify that they are in place after a restart,
and respecify them if required. From MySQL 8.0.19, the
PRIVILEGE_CHECKS_USER
account setting is
preserved in this situation, so it is retrieved from the table
and reapplied to the channel.
The user account that is specified using the
CHANGE MASTER TO
statement as the
PRIVILEGE_CHECKS_USER
account for a
replication channel must have the
REPLICATION_APPLIER
privilege,
otherwise the replication applier thread does not start. As
explained in Section 17.3.3, “Replication Privilege Checks”, the
account requires further privileges that are sufficient to apply
all the expected transactions expected on the replication
channel. These privileges are checked only when relevant
transactions are executed.
The use of row-based binary logging
(binlog_format=ROW
) is strongly
recommended for replication channels that are secured using a
PRIVILEGE_CHECKS_USER
account. With
statement-based binary logging, some administrator-level
privileges might be required for the
PRIVILEGE_CHECKS_USER
account to execute
transactions successfully. From MySQL 8.0.19, the
REQUIRE_ROW_FORMAT
setting can be applied to
secured channels, which restricts the channel from executing
events that would require these privileges.
The REPLICATION_APPLIER
privilege
explicitly or implicitly allows the
PRIVILEGE_CHECKS_USER
account to carry out
the following operations that a replication thread needs to
perform:
Setting the value of the system variables
gtid_next
,
original_commit_timestamp
,
original_server_version
,
immediate_server_version
,
and pseudo_slave_mode
, to
apply appropriate metadata and behaviors when executing
transactions.
Executing internal-use BINLOG
statements to apply mysqlbinlog output,
provided that the account also has permission for the tables
and operations in those statements.
Updating the system tables
mysql.gtid_executed
,
mysql.slave_relay_log_info
,
mysql.slave_worker_info
, and
mysql.slave_master_info
, to update
replication metadata. (If events access these tables
explicitly for other purposes, you must grant the
appropriate privileges on the tables.)
Applying a binary log
Table_map_log_event
, which provides table
metadata but does not make any database changes.
If the REQUIRE_TABLE_PRIMARY_KEY_CHECK
option
of the CHANGE MASTER TO
statement
is set to the default of STREAM
, the
PRIVILEGE_CHECKS_USER
account needs
privileges sufficient to set restricted session variables, so
that it can change the value of the
sql_require_primary_key
system
variable for the duration of a session to match the setting
replicated from the master. The
SESSION_VARIABLES_ADMIN
privilege
gives the account this capability. This privilege also allows
the account to apply mysqlbinlog output that
was created using the
--disable-log-bin
option. If
you set REQUIRE_TABLE_PRIMARY_KEY_CHECK
to
either ON
or OFF
, the
slave always uses that value for the
sql_require_primary_key
system
variable in replication operations, and so does not need these
session administration level privileges.
If table encryption is in use, the
table_encryption_privilege_check
system variable is set to ON
, and the
encryption setting for the tablespace involved in any event
differs from the applying server's default encryption setting
(specified by the
default_table_encryption
system
variable), the PRIVILEGE_CHECKS_USER
account
needs the TABLE_ENCRYPTION_ADMIN
privilege in order to override the default encryption setting.
It is strongly recommended that you do not grant this privilege.
Instead, ensure that the default encryption setting on a
replication slave matches the encryption status of the
tablespaces that it replicates, and that replication group
members have the same default encryption setting, so that the
privilege is not needed.
In order to execute specific replicated transactions from the
relay log, or transactions from mysqlbinlog
output as required, the PRIVILEGE_CHECKS_USER
account must have the following privileges:
For a row insertion logged in row format (which are logged
as a Write_rows_log_event
), the
INSERT
privilege on the
relevant table.
For a row update logged in row format (which are logged as
an Update_rows_log_event
), the
UPDATE
privilege on the
relevant table.
For a row deletion logged in row format (which are logged as
a Delete_rows_log_event
), the
DELETE
privilege on the
relevant table.
If statement-based binary logging is in use (which is not
recommended with a PRIVILEGE_CHECKS_USER
account), for a transaction control statement such as
BEGIN
or COMMIT
or DML
logged in statement format (which are logged as a
Query_log_event
), the
PRIVILEGE_CHECKS_USER
account needs
privileges to execute the statement contained in the event.
If LOAD DATA
operations need to
be carried out on the replication channel, use row-based binary
logging (binlog_format=ROW
).
With this logging format, the
FILE
privilege is not needed to
execute the event, so do not give the
PRIVILEGE_CHECKS_USER
account this privilege.
The use of row-based binary logging is strongly recommended with
replication channels that are secured using a
PRIVILEGE_CHECKS_USER
account. If
REQUIRE_ROW_FORMAT
is set for the channel,
row-based binary logging is required. The
Format_description_log_event
, which deletes
any temporary files created by LOAD
DATA
events, is processed without privilege checks.
For more information, see
Section 17.5.1.19, “Replication and LOAD DATA”.
If the init_slave
system
variable is set to specify one or more SQL statements to be
executed when the SQL thread starts, the
PRIVILEGE_CHECKS_USER
account must have the
privileges needed to execute these statements.
It is recommended that you never give any ACL privileges to the
PRIVILEGE_CHECKS_USER
account, including
CREATE USER
,
CREATE ROLE
,
DROP ROLE
, and
GRANT OPTION
, and do not permit
the account to update the mysql.user
table.
With these privileges, the account could be used to create or
modify user accounts on the server. To avoid ACL statements
issued on the master being replicated to the secured channel for
execution (where they will fail in the absence of these
privileges), you can issue SET sql_log_bin =
0
before all ACL statements and SET
sql_log_bin = 1
after them, to omit the statements
from the master's binary log. Alternatively, you can set a
dedicated current database before executing all ACL statements,
and use a replication filter
(--binlog-ignore-db
) to filter
out this database on the slave.
From MySQL 8.0.19, as well as securing asynchronous and
semi-synchronous replication, you may choose to use a
PRIVILEGE_CHECKS_USER
account to secure the
two replication applier threads used by Group Replication. The
group_replication_applier
thread on each
group member is used for applying the group's transactions, and
the group_replication_recovery
thread on each
group member is used for state transfer from the binary log as
part of distributed recovery when the member joins or rejoins
the group.
To secure one of these threads, stop Group Replication, then
issue the CHANGE MASTER TO
statement with the PRIVILEGE_CHECKS_USER
option, specifying group_replication_applier
or group_replication_recovery
as the channel
name. For example:
mysql>STOP GROUP_REPLICATION;
mysql>CHANGE MASTER TO PRIVILEGE_CHECKS_USER = 'gr_repl'@'%.example.com' FOR CHANNEL 'group_replication_recovery';
mysql>START GROUP_REPLICATION;
For Group Replication channels, the
REQUIRE_ROW_FORMAT
setting is automatically
enabled when the channel is created, and cannot be disabled, so
you do not need to specify this.
In MySQL 8.0.19, ensure that you do not issue the
CHANGE MASTER TO
statement with
the PRIVILEGE_CHECKS_USER
option while
Group Replication is running. This action causes the relay log
files for the channel to be purged, which might cause the loss
of transactions that have been received and queued in the
relay log, but not yet applied.
Group Replication requires every table that is to be replicated
by the group to have a defined primary key, or primary key
equivalent where the equivalent is a non-null unique key. Rather
than using the checks carried out by the
sql_require_primary_key
system
variable, Group Replication has its own built-in set of checks
for primary keys or primary key equivalents. You may set the
REQUIRE_TABLE_PRIMARY_KEY_CHECK
option of the
CHANGE MASTER TO
statement to
ON
for a Group Replication channel. However,
be aware that you might find some transactions that are
permitted under Group Replication's built-in checks are not
permitted under the checks carried out when you set
sql_require_primary_key = ON
or
REQUIRE_TABLE_PRIMARY_KEY_CHECK = ON
. For
this reason, new and upgraded Group Replication channels from
MySQL 8.0.20 (when the option was introduced) have
REQUIRE_TABLE_PRIMARY_KEY_CHECK
set to the
default of STREAM
, rather than to
ON
.
If a remote cloning operation is used for distributed recovery
in Group Replication (see
Section 18.4.3.1, “Cloning for Distributed Recovery”), from MySQL 8.0.19,
the PRIVILEGE_CHECKS_USER
account and related
settings from the donor are cloned to the joining member. If the
joining member is set to start Group Replication on boot, it
automatically uses the account for privilege checks on the
appropriate replication channels.
In MySQL 8.0.18, due to a number of limitations, it is
recommended that you do not use a
PRIVILEGE_CHECKS_USER
account with Group
Replication channels.
If a privilege check against the
PRIVILEGE_CHECKS_USER
account fails, the
transaction is not executed and replication stops for the
channel. Details of the error and the last applied transaction
are recorded in the Performance Schema
replication_applier_status_by_worker
table. Follow this procedure to recover from the error:
Identify the replicated event that caused the error and verify whether or not the event is expected and from a trusted source. You can use mysqlbinlog to retrieve and display the events that were logged around the time of the error. For instructions to do this, see Section 7.5, “Point-in-Time (Incremental) Recovery”.
If the replicated event is not expected or is not from a known and trusted source, investigate the cause. If you can identify why the event took place and there are no security considerations, proceed to fix the error as described below.
If the PRIVILEGE_CHECKS_USER
account
should have been permitted to execute the transaction, but
has been misconfigured, grant the missing privileges to the
account and restart replication for the channel.
If the transaction needs to be executed and you have
verified that it is trusted, but the
PRIVILEGE_CHECKS_USER
account should not
have this privilege normally, you can grant the required
privilege to the PRIVILEGE_CHECKS_USER
account temporarily. After the replicated event has been
applied, remove the privilege from the account, and take any
necessary steps to ensure the event does not recur if it is
avoidable.
If the transaction is an administrative action that should
only have taken place on the master and not on the slave, or
should only have taken place on a single replication group
member, skip the transaction on the server or servers where
it stopped replication, then issue
START SLAVE
to restart
replication on the channel. To avoid the situation in
future, you could issue such administrative statements with
SET sql_log_bin = 0
before them and
SET sql_log_bin = 1
after them, so that
they are not logged on the master.
If the transaction is a DDL or DML statement that should not
have taken place on either the master or the slave, skip the
transaction on the server or servers where it stopped
replication, undo the transaction manually on the server
where it originally took place, then issue
START SLAVE
to restart
replication.
To skip a transaction, if GTIDs are in use, commit an empty transaction that has the GTID of the failing transaction, for example:
SET GTID_NEXT='aaa-bbb-ccc-ddd:N'; BEGIN; COMMIT; SET GTID_NEXT='AUTOMATIC';
If GTIDs are not in use, issue a SET GLOBAL
sql_slave_skip_counter
statement to skip the event.
For instructions to use this alternative method and more details
about skipping transactions, see
Section 17.1.7.3, “Skipping Transactions”.
Replication can be used in many different environments for a range of purposes. This section provides general notes and advice on using replication for specific solution types.
For information on using replication in a backup environment, including notes on the setup, backup procedure, and files to back up, see Section 17.4.1, “Using Replication for Backups”.
For advice and tips on using different storage engines on the master and slaves, see Section 17.4.4, “Using Replication with Different Master and Slave Storage Engines”.
Using replication as a scale-out solution requires some changes in the logic and operation of applications that use the solution. See Section 17.4.5, “Using Replication for Scale-Out”.
For performance or data distribution reasons, you may want to replicate different databases to different replication slaves. See Section 17.4.6, “Replicating Different Databases to Different Slaves”
As the number of replication slaves increases, the load on the master can increase and lead to reduced performance (because of the need to replicate the binary log to each slave). For tips on improving your replication performance, including using a single secondary server as a replication master, see Section 17.4.7, “Improving Replication Performance”.
For guidance on switching masters, or converting slaves into masters as part of an emergency failover solution, see Section 17.4.8, “Switching Masters During Failover”.
For information on security measures specific to servers in a replication topology, see Section 17.3, “Replication Security”.
To use replication as a backup solution, replicate data from the master to a slave, and then back up the data slave. The slave can be paused and shut down without affecting the running operation of the master, so you can produce an effective snapshot of “live” data that would otherwise require the master to be shut down.
How you back up a database depends on its size and whether you are backing up only the data, or the data and the replication slave state so that you can rebuild the slave in the event of failure. There are therefore two choices:
If you are using replication as a solution to enable you to back up the data on the master, and the size of your database is not too large, the mysqldump tool may be suitable. See Section 17.4.1.1, “Backing Up a Slave Using mysqldump”.
For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw data files instead. Using the raw data files option also means that you can back up the binary and relay logs that will enable you to recreate the slave in the event of a slave failure. For more information, see Section 17.4.1.2, “Backing Up Raw Data from a Slave”.
Another backup strategy, which can be used for either master or slave servers, is to put the server in a read-only state. The backup is performed against the read-only server, which then is changed back to its usual read/write operational status. See Section 17.4.1.3, “Backing Up a Master or Slave by Making It Read Only”.
Using mysqldump to create a copy of a database enables you to capture all of the data in the database in a format that enables the information to be imported into another instance of MySQL Server (see Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the information is SQL statements, the file can easily be distributed and applied to running servers in the event that you need access to the data in an emergency. However, if the size of your data set is very large, mysqldump may be impractical.
When using mysqldump, you should stop replication on the slave before starting the dump process to ensure that the dump contains a consistent set of data:
Stop the slave from processing requests. You can stop replication completely on the slave using mysqladmin:
shell> mysqladmin stop-slave
Alternatively, you can stop only the slave SQL thread to pause event execution:
shell> mysql -e 'STOP SLAVE SQL_THREAD;'
This enables the slave to continue to receive data change events from the master's binary log and store them in the relay logs using the I/O thread, but prevents the slave from executing these events and changing its data. Within busy replication environments, permitting the I/O thread to run during backup may speed up the catch-up process when you restart the slave SQL thread.
Run mysqldump to dump your databases. You may either dump all databases or select databases to be dumped. For example, to dump all databases:
shell> mysqldump --all-databases > fulldb.dump
Once the dump has completed, start slave operations again:
shell> mysqladmin start-slave
In the preceding example, you may want to add login credentials (user name, password) to the commands, and bundle the process up into a script that you can run automatically each day.
If you use this approach, make sure you monitor the slave replication process to ensure that the time taken to run the backup does not affect the slave's ability to keep up with events from the master. See Section 17.1.7.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add another slave and distribute the backup process. For an example of how to configure this scenario, see Section 17.4.6, “Replicating Different Databases to Different Slaves”.
To guarantee the integrity of the files that are copied, backing
up the raw data files on your MySQL replication slave should
take place while your slave server is shut down. If the MySQL
server is still running, background tasks may still be updating
the database files, particularly those involving storage engines
with background processes such as InnoDB
.
With InnoDB
, these problems should be
resolved during crash recovery, but since the slave server can
be shut down during the backup process without affecting the
execution of the master it makes sense to take advantage of this
capability.
To shut down the server and back up the files:
Shut down the slave MySQL server:
shell> mysqladmin shutdown
Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip. For example, assuming that the data directory is located under the current directory, you can archive the entire directory as follows:
shell> tar cf /tmp/dbbackup.tar ./data
Start the MySQL server again. Under Unix:
shell> mysqld_safe &
Under Windows:
C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"
Normally you should back up the entire data directory for the slave MySQL server. If you want to be able to restore the data and operate as a slave (for example, in the event of failure of the slave), in addition to the data, you need to have the master info repository and relay log info repository, and the relay log files. These items are needed to resume replication after you restore the slave's data. If tables have been used for the master info and relay log info repositories (see Section 17.2.4, “Replication Relay and Status Logs”), which is the default in MySQL 8.0, these tables are backed up along with the data directory. If files have been used for the repositories, you must back these up separately. The relay log files must also be backed up separately if they have been placed in a different location to the data directory.
If you lose the relay logs but still have the
relay-log.info
file, you can check it to
determine how far the SQL thread has executed in the master
binary logs. Then you can use CHANGE MASTER
TO
with the MASTER_LOG_FILE
and
MASTER_LOG_POS
options to tell the slave to
re-read the binary logs from that point. This requires that the
binary logs still exist on the master server.
If your slave is replicating LOAD
DATA
statements, you should also back up any
SQL_LOAD-*
files that exist in the
directory that the slave uses for this purpose. The slave needs
these files to resume replication of any interrupted
LOAD DATA
operations. The
location of this directory is the value of the
slave_load_tmpdir
system
variable. If the server was not started with that variable set,
the directory location is the value of the
tmpdir
system variable.
It is possible to back up either master or slave servers in a
replication setup by acquiring a global read lock and
manipulating the read_only
system variable to change the read-only state of the server to
be backed up:
Make the server read-only, so that it processes only retrievals and blocks updates.
Perform the backup.
Change the server back to its normal read/write state.
The instructions in this section place the server to be backed up in a state that is safe for backup methods that get the data from the server, such as mysqldump (see Section 4.5.4, “mysqldump — A Database Backup Program”). You should not attempt to use these instructions to make a binary backup by copying files directly because the server may still have modified data cached in memory and not flushed to disk.
The following instructions describe how to do this for a master server and for a slave server. For both scenarios discussed here, suppose that you have the following replication setup:
A master server M1
A slave server S1 that has M1 as its master
A client C1 connected to M1
A client C2 connected to S1
In either scenario, the statements to acquire the global read
lock and manipulate the
read_only
variable are
performed on the server to be backed up and do not propagate to
any slaves of that server.
Scenario 1: Backup with a Read-Only Master
Put the master M1 in a read-only state by executing these statements on it:
mysql>FLUSH TABLES WITH READ LOCK;
mysql>SET GLOBAL read_only = ON;
While M1 is in a read-only state, the following properties are true:
Requests for updates sent by C1 to M1 will block because the server is in read-only mode.
Requests for query results sent by C1 to M1 will succeed.
Making a backup on M1 is safe.
Making a backup on S1 is not safe. This server is still running, and might be processing the binary log or update requests coming from client C2.
While M1 is read only, perform the backup. For example, you can use mysqldump.
After the backup operation on M1 completes, restore M1 to its normal operational state by executing these statements:
mysql>SET GLOBAL read_only = OFF;
mysql>UNLOCK TABLES;
Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for performance because clients of M1 are blocked from executing updates.
This strategy applies to backing up a master server in a replication setup, but can also be used for a single server in a nonreplication setting.
Scenario 2: Backup with a Read-Only Slave
Put the slave S1 in a read-only state by executing these statements on it:
mysql>FLUSH TABLES WITH READ LOCK;
mysql>SET GLOBAL read_only = ON;
While S1 is in a read-only state, the following properties are true:
The master M1 will continue to operate, so making a backup on the master is not safe.
The slave S1 is stopped, so making a backup on the slave S1 is safe.
These properties provide the basis for a popular backup scenario: Having one slave busy performing a backup for a while is not a problem because it does not affect the entire network, and the system is still running during the backup. In particular, clients can still perform updates on the master server, which remains unaffected by backup activity on the slave.
While S1 is read only, perform the backup. For example, you can use mysqldump.
After the backup operation on S1 completes, restore S1 to its normal operational state by executing these statements:
mysql>SET GLOBAL read_only = OFF;
mysql>UNLOCK TABLES;
After the slave is restored to normal operation, it again synchronizes to the master by catching up with any outstanding updates from the binary log of the master.
In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-safe) it must be possible for the slave to recover its state before halting. This section describes the impact of an unexpected halt of a slave during replication and how to configure a slave for the best chance of recovery to continue replication.
After an unexpected halt of a slave, upon restart the slave's SQL
thread must recover which transactions have been executed already.
The information required for recovery is stored in the slave's
relay log info log. From MySQL 8.0, this log is created by default
as an InnoDB
table named
mysql.slave_relay_log_info
(with the system
variable
relay_log_info_repository
set to
the default of TABLE
). By using this
transactional storage engine the information is always recoverable
upon restart.
Updates to the relay log info log table are committed together
with the transactions, meaning that the slave's progress
information recorded in that log is always consistent with what
has been applied to the database, even in the event of an
unexpected server halt. Previously, this information was stored by
default in a file in the data directory that was updated after the
transaction had been applied. This held the risk of losing
synchrony with the master depending at which stage of processing a
transaction the slave halted at, or even corruption of the file
itself. The setting
relay_log_info_repository = FILE
is now deprecated, and will be removed in a future release. For
further information on the slave logs, see
Section 17.2.4, “Replication Relay and Status Logs”.
When the relay log info log is stored in the
mysql.slave_relay_log_info
table, DML
transactions and also atomic DDL make the following three updates
together, atomically:
Apply the transaction on the database.
Update the replication positions in the
mysql.slave_relay_log_info
table.
Update the GTID in the mysql.gtid_executed table (when GTIDs are enabled and the binary log is disabled on the server).
In all other cases, including DDL statements that are not fully
atomic, and exempted storage engines that do not support atomic
DDL, the mysql.slave_relay_log_info
table might
be missing updates associated with replicated data if the server
halts unexpectedly. Restoring updates in this case is a manual
process. For details on atomic DDL support in MySQL
8.0, and the resulting behavior for the replication
of certain statements, see Section 13.1.1, “Atomic Data Definition Statement Support”.
Exactly how a replication slave recovers from an unexpected halt
is influenced by the chosen method of replication, whether the
slave is single-threaded or multithreaded, the setting of
variables such as
relay_log_recovery
, and whether
features such as MASTER_AUTO_POSITION
are being
used.
The following table shows the impact of these different factors on how a single-threaded slave recovers from an unexpected halt.
Table 17.3 Factors Influencing Single-threaded Replication Slave Recovery
GTID |
MASTER_AUTO_POSITION |
Crash type |
Recovery guaranteed |
Relay log impact |
||
---|---|---|---|---|---|---|
OFF |
OFF |
1 |
TABLE |
Server |
Yes |
Lost |
OFF |
OFF |
1 |
Any |
OS |
No |
Lost |
OFF |
OFF |
0 |
TABLE |
Server |
Yes |
Remains |
OFF |
OFF |
0 |
TABLE |
OS |
No |
Remains |
ON |
ON |
1 |
Any |
Any |
Yes |
Lost |
ON |
OFF |
0 |
TABLE |
Server |
Yes |
Remains |
ON |
OFF |
0 |
Any |
OS |
No |
Remains |
As the table shows, when using a single-threaded slave the following configurations are most resilient to unexpected halts:
When using GTIDs and MASTER_AUTO_POSITION
,
set relay_log_recovery=1
.
With this configuration the setting of
relay_log_info_repository
and
other variables does not impact on recovery. Note that to
guarantee recovery,
sync_binlog=1
(which is the
default) must also be set on the slave, so that the slave's
binary log is synchronized to disk at each write. Otherwise,
committed transactions might not be present in the slave's
binary log.
When using file position based replication, set
relay_log_recovery=1
and
relay_log_info_repository=TABLE
.
During recovery the relay log is lost.
The following table shows the impact of these different factors on how a multithreaded slave recovers from an unexpected halt.
Table 17.4 Factors Influencing Multithreaded Replication Slave Recovery
GTID |
|
Crash type |
Recovery guaranteed |
Relay log impact |
|||
---|---|---|---|---|---|---|---|
OFF |
1 |
OFF |
1 |
TABLE |
Any |
Yes |
Lost |
OFF |
>1 |
OFF |
1 |
TABLE |
Server |
Yes |
Lost |
OFF |
>1 |
OFF |
1 |
Any |
OS |
No |
Lost |
OFF |
1 |
OFF |
0 |
TABLE |
Server |
Yes |
Remains |
OFF |
1 |
OFF |
0 |
TABLE |
OS |
No |
Remains |
ON |
Any | ON |
1 |
Any |
Any |
Yes |
Lost |
ON |
1 |
OFF |
0 |
TABLE |
Server |
Yes |
Remains |
ON |
1 |
OFF |
0 |
Any |
OS |
No |
Remains |
As the table shows, when using a multithreaded slave the following configurations are most resilient to unexpected halts:
When using GTIDs and
MASTER_AUTO_POSITION=ON
, set
relay_log_recovery=1
. With
this configuration the setting of
relay_log_info_repository
and
other variables does not impact on recovery. From MySQL
8.0.18, a multithreaded slave automatically skips relay log
recovery when MASTER_AUTO_POSITION
is set
to ON
, so the setting for
relay_log_recovery
makes no
difference.
When using file position based replication, set
relay_log_recovery=1
,
sync_relay_log=1
, and
relay_log_info_repository=TABLE
.
During recovery the relay log is lost.
It is important to note the impact of
sync_relay_log=1
, which requires
a write of to the relay log per transaction. Although this setting
is the most resilient to an unexpected halt, with at most one
unwritten transaction being lost, it also has the potential to
greatly increase the load on storage. Without
sync_relay_log=1
, the effect of
an unexpected halt depends on how the relay log is handled by the
operating system. Also note that when
relay_log_recovery=0
, the next
time the slave is started after an unexpected halt the relay log
is processed as part of recovery. After this process completes,
the relay log is deleted.
An unexpected halt of a multithreaded replication slave using the recommended file position based replication configuration above may result in a relay log with transaction inconsistencies (gaps in the sequence of transactions) caused by the unexpected halt. See Section 17.5.1.33, “Replication and Transaction Inconsistencies”. If the relay log recovery process encounters such transaction inconsistencies they are filled and the recovery process continues automatically.
When you are using multi-source replication and
relay_log_recovery=1
, after
restarting due to an unexpected halt all replication channels go
through the relay log recovery process. Any inconsistencies found
in the relay log due to an unexpected halt of a multithreaded
slave are filled.
The current progress of the replication applier (SQL) thread when
using row-based replication is monitored through Performance
Schema instrument stages, enabling you to track the processing of
operations and check the amount of work completed and work
estimated. When these Performance Schema instrument stages are
enabled the events_stages_current
table shows stages for applier threads and their progress. For
background information, see
Section 26.12.5, “Performance Schema Stage Event Tables”.
To track progress of all three row-based replication event types (write, update, delete):
Enable the three Performance Schema stages by issuing:
mysql>UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
->WHERE NAME LIKE 'stage/sql/Applying batch of row changes%';
Wait for some events to be processed by the replication
applier thread and then check progress by looking into the
events_stages_current
table. For
example to get progress for update
events
issue:
mysql>SELECT WORK_COMPLETED, WORK_ESTIMATED FROM performance_schema.events_stages_current
->WHERE EVENT_NAME LIKE 'stage/sql/Applying batch of row changes (update)'
If
binlog_rows_query_log_events
is enabled, information about queries is stored in the binary
log and is exposed in the processlist_info
field. To see the original query that triggered this event:
mysql>SELECT db, processlist_state, processlist_info FROM performance_schema.threads
->WHERE processlist_state LIKE 'stage/sql/Applying batch of row changes%' AND thread_id = N;
It does not matter for the replication process whether the source
table on the master and the replicated table on the slave use
different engine types. In fact, the
default_storage_engine
system
variable is not replicated.
This provides a number of benefits in the replication process in
that you can take advantage of different engine types for
different replication scenarios. For example, in a typical
scale-out scenario (see
Section 17.4.5, “Using Replication for Scale-Out”), you want to use
InnoDB
tables on the master to take advantage
of the transactional functionality, but use
MyISAM
on the slaves where transaction support
is not required because the data is only read. When using
replication in a data-logging environment you may want to use the
Archive
storage engine on the slave.
Configuring different engines on the master and slave depends on how you set up the initial replication process:
If you used mysqldump to create the database snapshot on your master, you could edit the dump file text to change the engine type used on each table.
Another alternative for mysqldump is to
disable engine types that you do not want to use on the slave
before using the dump to build the data on the slave. For
example, you can add the
--skip-federated
option on your slave to disable the
FEDERATED
engine. If a specific engine does
not exist for a table to be created, MySQL will use the
default engine type, usually MyISAM
. (This
requires that the
NO_ENGINE_SUBSTITUTION
SQL
mode is not enabled.) If you want to disable additional
engines in this way, you may want to consider building a
special binary to be used on the slave that only supports the
engines you want.
If you are using raw data files (a binary backup) to set up
the slave, you will be unable to change the initial table
format. Instead, use ALTER
TABLE
to change the table types after the slave has
been started.
For new master/slave replication setups where there are currently no tables on the master, avoid specifying the engine type when creating new tables.
If you are already running a replication solution and want to convert your existing tables to another engine type, follow these steps:
Stop the slave from running replication updates:
mysql> STOP SLAVE;
This will enable you to change engine types without interruptions.
Execute an ALTER TABLE ...
ENGINE='
for
each table to be changed.
engine_type
'
Start the slave replication process again:
mysql> START SLAVE;
Although the
default_storage_engine
variable
is not replicated, be aware that CREATE
TABLE
and ALTER TABLE
statements that include the engine specification will be correctly
replicated to the slave. For example, if you have a CSV table and
you execute:
mysql> ALTER TABLE csvtable Engine='MyISAM';
The above statement will be replicated to the slave and the engine
type on the slave will be converted to MyISAM
,
even if you have previously changed the table type on the slave to
an engine other than CSV. If you want to retain engine differences
on the master and slave, you should be careful to use the
default_storage_engine
variable
on the master when creating a new table. For example, instead of:
mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;
Use this format:
mysql>SET default_storage_engine=MyISAM;
mysql>CREATE TABLE tablea (columna int);
When replicated, the
default_storage_engine
variable
will be ignored, and the CREATE
TABLE
statement will execute on the slave using the
slave's default engine.
You can use replication as a scale-out solution; that is, where you want to split up the load of database queries across multiple database servers, within some reasonable limitations.
Because replication works from the distribution of one master to one or more slaves, using replication for scale-out works best in an environment where you have a high number of reads and low number of writes/updates. Most websites fit into this category, where users are browsing the website, reading articles, posts, or viewing products. Updates only occur during session management, or when making a purchase or adding a comment/message to a forum.
Replication in this situation enables you to distribute the reads over the replication slaves, while still enabling your web servers to communicate with the replication master when a write is required. You can see a sample replication layout for this scenario in Figure 17.1, “Using Replication to Improve Performance During Scale-Out”.
If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with a replicated setup should be very smooth and easy. Change the implementation of your database access to send all writes to the master, and to send reads to either the master or a slave. If your code does not have this level of abstraction, setting up a replicated system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or module that implements the following functions:
safe_writer_connect()
safe_reader_connect()
safe_reader_statement()
safe_writer_statement()
safe_
in each function name means that the
function takes care of handling all error conditions. You can use
different names for the functions. The important thing is to have
a unified interface for connecting for reads, connecting for
writes, doing a read, and doing a write.
Then convert your client code to use the wrapper library. This may be a painful and scary process at first, but it pays off in the long run. All applications that use the approach just described are able to take advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions (for example, to log how long each statement took, or which statement among those issued gave you an error).
If you have written a lot of code, you may want to automate the conversion task by writing a conversion script. Ideally, your code uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway, or at least going through and manually regularizing it to use a consistent style.
There may be situations where you have a single master and want to replicate different databases to different slaves. For example, you may want to distribute different sales data to different departments to help spread the load during data analysis. A sample of this layout is shown in Figure 17.2, “Using Replication to Replicate Databases to Separate Replication Slaves”.
You can achieve this separation by configuring the master and
slaves as normal, and then limiting the binary log statements that
each slave processes by using the
--replicate-wild-do-table
configuration option on each slave.
You should not use
--replicate-do-db
for this
purpose when using statement-based replication, since
statement-based replication causes this option's effects to
vary according to the database that is currently selected. This
applies to mixed-format replication as well, since this enables
some updates to be replicated using the statement-based format.
However, it should be safe to use
--replicate-do-db
for this
purpose if you are using row-based replication only, since in
this case the currently selected database has no effect on the
option's operation.
For example, to support the separation as shown in
Figure 17.2, “Using Replication to Replicate Databases to Separate Replication Slaves”, you should
configure each replication slave as follows, before executing
START SLAVE
:
Replication slave 1 should use
--replicate-wild-do-table=databaseA.%
.
Replication slave 2 should use
--replicate-wild-do-table=databaseB.%
.
Replication slave 3 should use
--replicate-wild-do-table=databaseC.%
.
Each slave in this configuration receives the entire binary log
from the master, but executes only those events from the binary
log that apply to the databases and tables included by the
--replicate-wild-do-table
option in
effect on that slave.
If you have data that must be synchronized to the slaves before replication starts, you have a number of choices:
Synchronize all the data to each slave, and delete the databases, tables, or both that you do not want to keep.
Use mysqldump to create a separate dump file for each database and load the appropriate dump file on each slave.
Use a raw data file dump and include only the specific files and databases that you need for each slave.
This does not work with InnoDB
databases unless you use
innodb_file_per_table
.
As the number of slaves connecting to a master increases, the load, although minimal, also increases, as each slave uses a client connection to the master. Also, as each slave must receive a full copy of the master binary log, the network load on the master may also increase and create a bottleneck.
If you are using a large number of slaves connected to one master, and that master is also busy processing requests (for example, as part of a scale-out solution), then you may want to improve the performance of the replication process.
One way to improve the performance of the replication process is to create a deeper replication structure that enables the master to replicate to only one slave, and for the remaining slaves to connect to this primary slave for their individual replication requirements. A sample of this structure is shown in Figure 17.3, “Using an Additional Replication Host to Improve Performance”.
For this to work, you must configure the MySQL instances as follows:
Master 1 is the primary master where all changes and updates are written to the database. Binary logging is enabled on both masters, which is the default.
Master 2 is the slave to the Master 1 that provides the
replication functionality to the remainder of the slaves in
the replication structure. Master 2 is the only machine
permitted to connect to Master 1. Master 2 has the
--log-slave-updates
option
enabled (which is the default). With this option, replication
instructions from Master 1 are also written to Master 2's
binary log so that they can then be replicated to the true
slaves.
Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2, which actually consists of the upgrades logged on Master 1.
The above solution reduces the client load and the network interface load on the primary master, which should improve the overall performance of the primary master when used as a direct database solution.
If your slaves are having trouble keeping up with the replication process on the master, there are a number of options available:
If possible, put the relay logs and the data files on
different physical drives. To do this, set the
relay_log
system variable to
specify the location of the relay log.
If heavy disk I/O activity for reads of the binary log file
and relay log files is an issue, consider increasing the value
of the rpl_read_size
system
variable. This system variable controls the minimum amount of
data read from the log files, and increasing it might reduce
file reads and I/O stalls when the file data is not currently
cached by the operating system. Note that a buffer the size of
this value is allocated for each thread that reads from the
binary log and relay log files, including dump threads on
masters and coordinator threads on slaves. Setting a large
value might therefore have an impact on memory consumption for
servers.
If the slaves are significantly slower than the master, you may want to divide up the responsibility for replicating different databases to different slaves. See Section 17.4.6, “Replicating Different Databases to Different Slaves”.
If your master makes use of transactions and you are not
concerned about transaction support on your slaves, use
MyISAM
or another nontransactional engine
on the slaves. See
Section 17.4.4, “Using Replication with Different Master and Slave Storage Engines”.
If your slaves are not acting as masters, and you have a
potential solution in place to ensure that you can bring up a
master in the event of failure, then you can disable the
log_slave_updates
system
variable on the slaves. This prevents “dumb”
slaves from also logging events they have executed into their
own binary log.
You can tell a slave to change to a new master using the
CHANGE MASTER TO
statement. The
slave does not check whether the databases on the master are
compatible with those on the slave; it simply begins reading and
executing events from the specified coordinates in the new
master's binary log. In a failover situation, all the servers
in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not
affect the structure or integrity of the database, provided that
you exercise care in making the change.
Slaves should be run with binary logging enabled (the
--log-bin
option), which is the
default. If you are not using GTIDs for replication, then the
slaves should also be run with
--log-slave-updates=OFF
(logging
slave updates is the default). In this way, the slave is ready to
become a master without restarting the slave
mysqld. Assume that you have the structure
shown in Figure 17.4, “Redundancy Using Replication, Initial Structure”.
In this diagram, the MySQL Master
holds the
master database, the MySQL Slave
hosts are
replication slaves, and the Web Client
machines
are issuing database reads and writes. Web clients that issue only
reads (and would normally be connected to the slaves) are not
shown, as they do not need to switch to a new server in the event
of failure. For a more detailed example of a read/write scale-out
replication structure, see
Section 17.4.5, “Using Replication for Scale-Out”.
Each MySQL Slave (Slave 1
, Slave
2
, and Slave 3
) is a slave running
with binary logging enabled, and with
--log-slave-updates=OFF
. Because
updates received by a slave from the master are not logged in the
binary log when
--log-slave-updates=OFF
is
specified, the binary log on each slave is empty initially. If for
some reason MySQL Master
becomes unavailable,
you can pick one of the slaves to become the new master. For
example, if you pick Slave 1
, all Web
Clients
should be redirected to Slave
1
, which writes the updates to its binary log.
Slave 2
and Slave 3
should
then replicate from Slave 1
.
The reason for running the slave with
--log-slave-updates=OFF
is to
prevent slaves from receiving updates twice in case you cause one
of the slaves to become the new master. If Slave
1
has --log-slave-updates
enabled, which is the default, it writes any updates that it
receives from Master
in its own binary log.
This means that, when Slave 2
changes from
Master
to Slave 1
as its
master, it may receive updates from Slave 1
that it has already received from Master
.
Make sure that all slaves have processed any statements in their
relay log. On each slave, issue STOP SLAVE
IO_THREAD
, then check the output of
SHOW PROCESSLIST
until you see
Has read all relay log
. When this is true for
all slaves, they can be reconfigured to the new setup. On the
slave Slave 1
being promoted to become the
master, issue STOP SLAVE
and
RESET MASTER
.
On the other slaves Slave 2
and Slave
3
, use STOP SLAVE
and
CHANGE MASTER TO MASTER_HOST='Slave1'
(where
'Slave1'
represents the real host name of
Slave 1
). To use CHANGE MASTER
TO
, add all information about how to connect to
Slave 1
from Slave 2
or
Slave 3
(user
,
password
,
port
). When issuing the CHANGE
MASTER TO
statement in this, there is no need to specify
the name of the Slave 1
binary log file or log
position to read from, since the first binary log file and
position 4, are the defaults. Finally, execute
START SLAVE
on Slave
2
and Slave 3
.
Once the new replication setup is in place, you need to tell each
Web Client
to direct its statements to
Slave 1
. From that point on, all update
statements sent by Web Client
to Slave
1
are written to the binary log of Slave
1
, which then contains every update statement sent to
Slave 1
since Master
died.
The resulting server structure is shown in Figure 17.5, “Redundancy Using Replication, After Master Failure”.
When Master
becomes available again, you should
make it a slave of Slave 1
. To do this, issue
on Master
the same CHANGE
MASTER TO
statement as that issued on Slave
2
and Slave 3
previously.
Master
then becomes a slave of S1ave
1
and picks up the Web Client
writes
that it missed while it was offline.
To make Master
a master again, use the
preceding procedure as if Slave 1
was
unavailable and Master
was to be the new
master. During this procedure, do not forget to run
RESET MASTER
on
Master
before making Slave
1
, Slave 2
, and Slave
3
slaves of Master
. If you fail to do
this, the slaves may pick up stale writes from the Web
Client
applications dating from before the point at
which Master
became unavailable.
You should be aware that there is no synchronization between slaves, even when they share the same master, and thus some slaves might be considerably ahead of others. This means that in some cases the procedure outlined in the previous example might not work as expected. In practice, however, relay logs on all slaves should be relatively close together.
One way to keep applications informed about the location of the
master is to have a dynamic DNS entry for the master. With
bind
you can use nsupdate
to update the DNS dynamically.
In addition to the built-in asynchronous replication, MySQL 8.0 supports an interface to semisynchronous replication that is implemented by plugins. This section discusses what semisynchronous replication is and how it works. The following sections cover the administrative interface to semisynchronous replication and how to install, configure, and monitor it.
MySQL replication by default is asynchronous. The master writes events to its binary log and slaves request them when they are ready. The master does not know whether or when a slave has retrieved and processed the transactions, and there is no guarantee that any event will ever reach any slave. With asynchronous replication, if the master crashes, transactions that it has committed might not have been transmitted to any slave. Failover from master to slave in this case might result in failover to a server that is missing transactions relative to the master.
With fully synchronous replication, when a master commits a transaction, all slaves will also have committed the transaction before the master returns to the session that performed the transaction. Fully synchronous replication means failover from the master to any slave is possible at any time. The drawback of fully synchronous replication is that there might be a lot of delay to complete a transaction.
Semisynchronous replication falls between asynchronous and fully synchronous replication. The master waits until at least one slave has received and logged the events (the required number of slaves is configurable), and then commits the transaction. The master does not wait for all slaves to acknowledge receipt, and it requires only an acknowledgement from the slaves, not that the events have been fully executed and committed on the slave side. Semisynchronous replication therefore guarantees that if the master crashes, all the transactions that it has committed have been transmitted to at least one slave.
Compared to asynchronous replication, semisynchronous replication provides improved data integrity, because when a commit returns successfully, it is known that the data exists in at least two places. Until a semisynchronous master receives acknowledgment from the required number of slaves, the transaction is on hold and not committed.
Compared to fully synchronous replication, semisynchronous replication is faster, because it can be configured to balance your requirements for data integrity (the number of slaves acknowledging receipt of the transaction) with the speed of commits, which are slower due to the need to wait for slaves.
With semisynchronous replication, if the master crashes and a failover to a slave is carried out, the failed master should not be reused as the replication master, and should be discarded. It could have transactions that were not acknowledged by any slave, which were therefore not committed before the failover.
If your goal is to implement a fault-tolerant replication topology where all the servers receive the same transactions in the same order, and a server that crashes can rejoin the group and be brought up to date automatically, you can use Group Replication to achieve this. For information, see Chapter 18, Group Replication.
The performance impact of semisynchronous replication compared to asynchronous replication is the tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment of receipt by the slave. This means that semisynchronous replication works best for close servers communicating over fast networks, and worst for distant servers communicating over slow networks. Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at which binary log events can be sent from master to slave. When one user is too busy, this will slow it down, which can be useful in some deployment situations.
Semisynchronous replication between a master and its slaves operates as follows:
A slave indicates whether it is semisynchronous-capable when it connects to the master.
If semisynchronous replication is enabled on the master side and there is at least one semisynchronous slave, a thread that performs a transaction commit on the master blocks and waits until at least one semisynchronous slave acknowledges that it has received all events for the transaction, or until a timeout occurs.
The slave acknowledges receipt of a transaction's events only after the events have been written to its relay log and flushed to disk.
If a timeout occurs without any slave having acknowledged the transaction, the master reverts to asynchronous replication. When at least one semisynchronous slave catches up, the master returns to semisynchronous replication.
Semisynchronous replication must be enabled on both the master and slave sides. If semisynchronous replication is disabled on the master, or enabled on the master but on no slaves, the master uses asynchronous replication.
While the master is blocking (waiting for acknowledgment from a
slave), it does not return to the session that performed the
transaction. When the block ends, the master returns to the
session, which then can proceed to execute other statements. At
this point, the transaction has committed on the master side, and
receipt of its events has been acknowledged by at least one slave.
The number of slave acknowledgments the master must receive per
transaction before returning to the session is configurable using
the
rpl_semi_sync_master_wait_for_slave_count
system variable, for which the default value is 1.
Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled back and must be sent to slaves.
For statements that do not occur in transactional context (that
is, when no transaction has been started with
START
TRANSACTION
or
SET autocommit =
0
), autocommit is enabled and each statement commits
implicitly. With semisynchronous replication, the master blocks
for each such statement, just as it does for explicit transaction
commits.
The
rpl_semi_sync_master_wait_point
system variable controls the point at which a semisynchronous
replication master waits for slave acknowledgment of transaction
receipt before returning a status to the client that committed the
transaction. These values are permitted:
AFTER_SYNC
(the default): The master writes
each transaction to its binary log and the slave, and syncs
the binary log to disk. The master waits for slave
acknowledgment of transaction receipt after the sync. Upon
receiving acknowledgment, the master commits the transaction
to the storage engine and returns a result to the client,
which then can proceed.
AFTER_COMMIT
: The master writes each
transaction to its binary log and the slave, syncs the binary
log, and commits the transaction to the storage engine. The
master waits for slave acknowledgment of transaction receipt
after the commit. Upon receiving acknowledgment, the master
returns a result to the client, which then can proceed.
The replication characteristics of these settings differ as follows:
With AFTER_SYNC
, all clients see the
committed transaction at the same time, which is after it has
been acknowledged by the slave and committed to the storage
engine on the master. Thus, all clients see the same data on
the master.
In the event of master failure, all transactions committed on the master have been replicated to the slave (saved to its relay log). A crash of the master and failover to the slave is lossless because the slave is up to date. As noted above, the master should not be reused after the failover.
With AFTER_COMMIT
, the client issuing the
transaction gets a return status only after the server commits
to the storage engine and receives slave acknowledgment. After
the commit and before slave acknowledgment, other clients can
see the committed transaction before the committing client.
If something goes wrong such that the slave does not process the transaction, then in the event of a master crash and failover to the slave, it is possible that such clients will see a loss of data relative to what they saw on the master.
The administrative interface to semisynchronous replication has several components:
Two plugins implement semisynchronous capability. There is one plugin for the master side and one for the slave side.
System variables control plugin behavior. Some examples:
Controls whether semisynchronous replication is enabled on the master. To enable or disable the plugin, set this variable to 1 or 0, respectively. The default is 0 (off).
A value in milliseconds that controls how long the master waits on a commit for acknowledgment from a slave before timing out and reverting to asynchronous replication. The default value is 10000 (10 seconds).
Similar to
rpl_semi_sync_master_enabled
,
but controls the slave plugin.
All
rpl_semi_sync_
system variables are described at
Section 5.1.8, “Server System Variables”.
xxx
Status variables enable semisynchronous replication monitoring. Some examples:
The number of semisynchronous slaves.
Whether semisynchronous replication currently is operational on the master. The value is 1 if the plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not enabled or the master has fallen back to asynchronous replication due to commit acknowledgment timeout.
The number of commits that were not acknowledged successfully by a slave.
The number of commits that were acknowledged successfully by a slave.
Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin has been enabled and the slave I/O thread is running, 0 otherwise.
All
Rpl_semi_sync_
status variables are described at
Section 5.1.10, “Server Status Variables”.
xxx
The system and status variables are available only if the
appropriate master or slave plugin has been installed with
INSTALL PLUGIN
.
Semisynchronous replication is implemented using plugins, so the plugins must be installed into the server to make them available. After a plugin has been installed, you control it by means of the system variables associated with it. These system variables are unavailable until the associated plugin has been installed.
This section describes how to install the semisynchronous replication plugins. For general information about installing plugins, see Section 5.6.1, “Installing and Uninstalling Plugins”.
To use semisynchronous replication, the following requirements must be satisfied:
The capability of installing plugins requires a MySQL server
that supports dynamic loading. To verify this, check that
the value of the
have_dynamic_loading
system
variable is YES
. Binary distributions
should support dynamic loading.
Replication must already be working, see Section 17.1, “Configuring Replication”.
There must not be multiple replication channels configured. Semisynchronous replication is only compatible with the default replication channel. See Section 17.2.3, “Replication Channels”.
To set up semisynchronous replication, use the following
instructions. The INSTALL PLUGIN
,
SET
GLOBAL
, STOP SLAVE
, and
START SLAVE
statements mentioned
here require the
REPLICATION_SLAVE_ADMIN
privilege
(or the deprecated SUPER
privilege).
MySQL distributions include semisynchronous replication plugin files for the master side and the slave side.
To be usable by a master or slave server, the appropriate plugin
library file must be located in the MySQL plugin directory (the
directory named by the
plugin_dir
system variable). If
necessary, configure the plugin directory location by setting
the value of plugin_dir
at
server startup.
The plugin library file base names are
semisync_master
and
semisync_slave
. The file name suffix differs
per platform (for example, .so
for Unix and
Unix-like systems, .dll
for Windows).
The master plugin library file must be present in the plugin directory of the master server. The slave plugin library file must be present in the plugin directory of each slave server.
To load the plugins, use the INSTALL
PLUGIN
statement on the master and on each slave that
is to be semisynchronous (adjust the .so
suffix for your platform as necessary).
On the master:
INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
On each slave:
INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';
If an attempt to install a plugin results in an error on Linux
similar to that shown here, you must install
libimf
:
mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)
You can obtain libimf
from
https://dev.mysql.com/downloads/os-linux.html.
To see which plugins are installed, use the
SHOW PLUGINS
statement, or query
the INFORMATION_SCHEMA.PLUGINS
table.
To verify plugin installation, examine the
INFORMATION_SCHEMA.PLUGINS
table or
use the SHOW PLUGINS
statement
(see Section 5.6.2, “Obtaining Server Plugin Information”). For
example:
mysql>SELECT PLUGIN_NAME, PLUGIN_STATUS
FROM INFORMATION_SCHEMA.PLUGINS
WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+ | PLUGIN_NAME | PLUGIN_STATUS | +----------------------+---------------+ | rpl_semi_sync_master | ACTIVE | +----------------------+---------------+
If the plugin fails to initialize, check the server error log for diagnostic messages.
After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must be enabled both on the master side and the slave side to enable semisynchronous replication. If only one side is enabled, replication will be asynchronous.
To control whether an installed plugin is enabled, set the
appropriate system variables. You can set these variables at
runtime using SET
GLOBAL
, or at server startup on the command line or in
an option file.
At runtime, these master-side system variables are available:
SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
SET GLOBAL rpl_semi_sync_master_timeout = N
;
On the slave side, this system variable is available:
SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};
For
rpl_semi_sync_master_enabled
or
rpl_semi_sync_slave_enabled
,
the value should be 1 to enable semisynchronous replication or 0
to disable it. By default, these variables are set to 0.
For
rpl_semi_sync_master_timeout
,
the value N
is given in milliseconds.
The default value is 10000 (10 seconds).
If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O thread (stopping it first if it is already running) to cause the slave to connect to the master and register as a semisynchronous slave:
STOP SLAVE IO_THREAD; START SLAVE IO_THREAD;
If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous replication.
At server startup, the variables that control semisynchronous
replication can be set as command-line options or in an option
file. A setting listed in an option file takes effect each time
the server starts. For example, you can set the variables in
my.cnf
files on the master and slave sides
as follows.
On the master:
[mysqld] rpl_semi_sync_master_enabled=1 rpl_semi_sync_master_timeout=1000 # 1 second
On each slave:
[mysqld] rpl_semi_sync_slave_enabled=1
The plugins for the semisynchronous replication capability expose several system and status variables that you can examine to determine its configuration and operational state.
The system variable reflect how semisynchronous replication is
configured. To check their values, use SHOW
VARIABLES
:
mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';
The status variables enable you to monitor the operation of
semisynchronous replication. To check their values, use
SHOW STATUS
:
mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';
When the master switches between asynchronous or semisynchronous
replication due to commit-blocking timeout or a slave catching
up, it sets the value of the
Rpl_semi_sync_master_status
status variable appropriately. Automatic fallback from
semisynchronous to asynchronous replication on the master means
that it is possible for the
rpl_semi_sync_master_enabled
system variable to have a value of 1 on the master side even
when semisynchronous replication is in fact not operational at
the moment. You can monitor the
Rpl_semi_sync_master_status
status variable to determine whether the master currently is
using asynchronous or semisynchronous replication.
To see how many semisynchronous slaves are connected, check
Rpl_semi_sync_master_clients
.
The number of commits that have been acknowledged successfully
or unsuccessfully by slaves are indicated by the
Rpl_semi_sync_master_yes_tx
and Rpl_semi_sync_master_no_tx
variables.
On the slave side,
Rpl_semi_sync_slave_status
indicates whether semisynchronous replication currently is
operational.
MySQL supports delayed replication such that a slave server deliberately executes transactions later than the master by at least a specified amount of time. This section describes how to configure a replication delay on a slave, and how to monitor replication delay.
In MySQL 8.0, the method of delaying replication
depends on two timestamps,
immediate_commit_timestamp
and
original_commit_timestamp
(see
Replication Delay Timestamps). If all servers
in the replication topology are running MySQL 8.0.1 or above,
delayed replication is measured using these timestamps. If either
the immediate master or slave is not using these timestamps, the
implementation of delayed replication from MySQL 5.7 is used (see
Delayed Replication). This section
describes delayed replication between servers which are all using
these timestamps.
The default replication delay is 0 seconds. Use the
CHANGE MASTER TO MASTER_DELAY=N
statement to
set the delay to N
seconds. A
transaction received from the master is not executed until at
least N
seconds later than its commit
on the immediate master. The delay happens per transaction (not
event as in previous MySQL versions) and the actual delay is
imposed only on gtid_log_event
or
anonymous_gtid_log_event
. The other events in
the transaction always follow these events without any waiting
time imposed on them.
START SLAVE
and
STOP SLAVE
take effect
immediately and ignore any delay. RESET
SLAVE
resets the delay to 0.
The replication_applier_configuration
Performance Schema table contains the
DESIRED_DELAY
column which shows the delay
configured using the MASTER_DELAY
option. The
replication_applier_status
Performance Schema table contains the
REMAINING_DELAY
column which shows the number
of delay seconds remaining.
Delayed replication can be used for several purposes:
To protect against user mistakes on the master. With a delay you can roll back a delayed slave to the time just before the mistake.
To test how the system behaves when there is a lag. For example, in an application, a lag might be caused by a heavy load on the slave. However, it can be difficult to generate this load level. Delayed replication can simulate the lag without having to simulate the load. It can also be used to debug conditions related to a lagging slave.
To inspect what the database looked like in the past, without having to reload a backup. For example, by configuring a slave with a delay of one week, if you then need to see what the database looked like before the last few days' worth of development, the delayed slave can be inspected.
MySQL 8.0 provides a new method for measuring delay (also referred to as replication lag) in replication topologies that depends on the following timestamps associated with the GTID of each transaction (instead of each event) written to the binary log.
original_commit_timestamp
: the number of
microseconds since epoch when the transaction was written
(committed) to the binary log of the original master.
immediate_commit_timestamp
: the number of
microseconds since epoch when the transaction was written
(committed) to the binary log of the immediate master.
The output of mysqlbinlog displays these
timestamps in two formats, microseconds from epoch and also
TIMESTAMP
format, which is based on the user
defined time zone for better readability. For example:
#170404 10:48:05 server id 1 end_log_pos 233 CRC32 0x016ce647 GTID last_committed=0 \ sequence_number=1 original_committed_timestamp=1491299285661130 immediate_commit_timestamp=1491299285843771 # original_commit_timestamp=1491299285661130 (2017-04-04 10:48:05.661130 WEST) # immediate_commit_timestamp=1491299285843771 (2017-04-04 10:48:05.843771 WEST) /*!80001 SET @@SESSION.original_commit_timestamp=1491299285661130*//*!*/; SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'/*!*/; # at 233
As a rule, the original_commit_timestamp
is
always the same on all replicas where the transaction is
applied. In master-slave replication, the
original_commit_timestamp
of a transaction in
the (original) master’s binary log is always the same as its
immediate_commit_timestamp
. In the slave’s
relay log, the original_commit_timestamp
and
immediate_commit_timestamp
of the transaction
are the same as in the master’s binary log; whereas in its own
binary log, the transaction’s
immediate_commit_timestamp
corresponds to
when the slave committed the transaction.
In a Group Replication setup, when the original master is a
member of a group, the
original_commit_timestamp
is generated when
the transaction is ready to be committed. In other words, when
it finished executing on the original master and its write set
is ready to be sent to all members of the group for
certification. Therefore, the same
original_commit_timestamp
is replicated to
all servers (regardless of whether it is a group member or slave
replicating from a member) applying the transaction and each
stores in its binary log the local commit time using
immediate_commit_timestamp
.
View change events, which are exclusive to Group Replication,
are a special case. Transactions containing these events are
generated by each server but share the same GTID (so, they are
not first executed in a master and then replicated to the group,
but all members of the group execute and apply the same
transaction). Since there is no original master, these
transactions have their
original_commit_timestamp
set to zero.
One of the most common ways to monitor replication delay (lag)
in previous MySQL versions was by relying on the
Seconds_Behind_Master
field in the output of
SHOW SLAVE STATUS
. However, this metric is
not suitable when using replication topologies more complex than
the traditional master-slave setup, such as Group Replication.
The addition of immediate_commit_timestamp
and original_commit_timestamp
to MySQL 8
provides a much finer degree of information about replication
delay. The recommended method to monitor replication delay in a
topology that supports these timestamps is using the following
Performance Schema tables.
replication_connection_status
:
current status of the connection to the master, provides
information on the last and current transaction the
connection thread queued into the relay log.
replication_applier_status_by_coordinator
:
current status of the coordinator thread that only displays
information when using a multithreaded slave, provides
information on the last transaction buffered by the
coordinator thread to a worker’s queue, as well as the
transaction it is currently buffering.
replication_applier_status_by_worker
:
current status of the thread(s) applying transactions
received from the master, provides information about the
transactions applied by the applier thread, or by each
worker when using a multithreaded slave.
Using these tables you can monitor information about the last transaction the corresponding thread processed and the transaction that thread is currently processing. This information comprises:
a transaction’s GTID
a transaction's original_commit_timestamp
and immediate_commit_timestamp
, retrieved
from the slave’s relay log
the time a thread started processing a transaction
for the last processed transaction, the time the thread finished processing it
In addition to the Performance Schema tables, the output of
SHOW SLAVE STATUS
has three
fields that show:
SQL_Delay
: A nonnegative integer
indicating the replication delay configured using
CHANGE MASTER TO MASTER_DELAY=N
, measured
in seconds.
SQL_Remaining_Delay
: When
Slave_SQL_Running_State
is
Waiting until MASTER_DELAY seconds after master
executed event
, this field contains an integer
indicating the number of seconds left of the delay. At other
times, this field is NULL
.
Slave_SQL_Running_State
: A string
indicating the state of the SQL thread (analogous to
Slave_IO_State
). The value is identical
to the State
value of the SQL thread as
displayed by SHOW
PROCESSLIST
.
When the slave SQL thread is waiting for the delay to elapse
before executing an event, SHOW
PROCESSLIST
displays its State
value as Waiting until MASTER_DELAY seconds after
master executed event
.
The following sections provide information about what is supported and what is not in MySQL replication, and about specific issues and situations that may occur when replicating certain statements.
Statement-based replication depends on compatibility at the SQL level between the master and slave. In other words, successful statement-based replication requires that any SQL features used be supported by both the master and the slave servers. If you use a feature on the master server that is available only in the current version of MySQL, you cannot replicate to a slave that uses an earlier version of MySQL. Such incompatibilities can also occur within a release series as well as between versions.
If you are planning to use statement-based replication between MySQL 8.0 and a previous MySQL release series, it is a good idea to consult the edition of the MySQL Reference Manual corresponding to the earlier release series for information regarding the replication characteristics of that series.
With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues, see Section 24.7, “Stored Program Binary Logging”. For more information about row-based logging and row-based replication, see Section 5.4.4.1, “Binary Logging Formats”, and Section 17.2.1, “Replication Formats”.
For additional information specific to replication and
InnoDB
, see
Section 15.19, “InnoDB and MySQL Replication”. For information
relating to replication with NDB Cluster, see
Section 22.6, “NDB Cluster Replication”.
Statement-based replication of
AUTO_INCREMENT
,
LAST_INSERT_ID()
, and
TIMESTAMP
values is carried out
subject to the following exceptions:
A statement invoking a trigger or function that causes an
update to an AUTO_INCREMENT
column is not
replicated correctly using statement-based replication.
These statements are marked as unsafe. (Bug #45677)
An INSERT
into a table that
has a composite primary key that includes an
AUTO_INCREMENT
column that is not the
first column of this composite key is not safe for
statement-based logging or replication. These statements are
marked as unsafe. (Bug #11754117, Bug #45670)
This issue does not affect tables using the
InnoDB
storage engine, since an
InnoDB
table with an
AUTO_INCREMENT
column requires at least one key where the auto-increment
column is the only or leftmost column.
Adding an AUTO_INCREMENT
column to a
table with ALTER TABLE
might
not produce the same ordering of the rows on the slave and
the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for
the table and the order in which the rows were inserted. If
it is important to have the same order on the master and
slave, the rows must be ordered before assigning an
AUTO_INCREMENT
number. Assuming that you
want to add an AUTO_INCREMENT
column to a
table t1
that has columns
col1
and col2
, the
following statements produce a new table
t2
identical to t1
but
with an AUTO_INCREMENT
column:
CREATE TABLE t2 LIKE t1; ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY; INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;
To guarantee the same ordering on both master and slave,
the ORDER BY
clause must name
all columns of t1
.
The instructions just given are subject to the limitations
of CREATE
TABLE ... LIKE
: Foreign key definitions are
ignored, as are the DATA DIRECTORY
and
INDEX DIRECTORY
table options. If a table
definition includes any of those characteristics, create
t2
using a CREATE
TABLE
statement that is identical to the one used
to create t1
, but with the addition of
the AUTO_INCREMENT
column.
Regardless of the method used to create and populate the
copy having the AUTO_INCREMENT
column,
the final step is to drop the original table and then rename
the copy:
DROP t1; ALTER TABLE t2 RENAME t1;
The BLACKHOLE
storage engine
accepts data but discards it and does not store it. When
performing binary logging, all inserts to such tables are always
logged, regardless of the logging format in use. Updates and
deletes are handled differently depending on whether statement
based or row based logging is in use. With the statement based
logging format, all statements affecting
BLACKHOLE
tables are logged, but their
effects ignored. When using row-based logging, updates and
deletes to such tables are simply skipped—they are not
written to the binary log. A warning is logged whenever this
occurs.
For this reason we recommend when you replicate to tables using
the BLACKHOLE
storage engine that
you have the binlog_format
server variable set to STATEMENT
, and not to
either ROW
or MIXED
.
The following applies to replication between MySQL servers that use different character sets:
If the master has databases with a character set different
from the global
character_set_server
value,
you should design your CREATE
TABLE
statements so that they do not implicitly
rely on the database default character set. A good
workaround is to state the character set and collation
explicitly in CREATE TABLE
statements.
CHECKSUM TABLE
returns a checksum
that is calculated row by row, using a method that depends on
the table row storage format. The storage format is not
guaranteed to remain the same between MySQL versions, so the
checksum value might change following an upgrade.
The statements CREATE SERVER
,
ALTER SERVER
, and
DROP SERVER
are not written to
the binary log, regardless of the binary logging format that is
in use.
MySQL applies these rules when various CREATE ... IF
NOT EXISTS
statements are replicated:
Every
CREATE
DATABASE IF NOT EXISTS
statement is replicated,
whether or not the database already exists on the master.
Similarly, every
CREATE TABLE
IF NOT EXISTS
statement without a
SELECT
is replicated, whether
or not the table already exists on the master. This includes
CREATE
TABLE IF NOT EXISTS ... LIKE
. Replication of
CREATE
TABLE IF NOT EXISTS ... SELECT
follows somewhat
different rules; see
Section 17.5.1.7, “Replication of CREATE TABLE ... SELECT Statements”, for
more information.
CREATE EVENT
IF NOT EXISTS
is always replicated, whether or not
the event named in the statement already exists on the
master.
MySQL applies these rules when
CREATE
TABLE ... SELECT
statements are replicated:
CREATE
TABLE ... SELECT
always performs an implicit
commit (Section 13.3.3, “Statements That Cause an Implicit Commit”).
If the destination table does not exist, logging occurs as
follows. It does not matter whether IF NOT
EXISTS
is present.
STATEMENT
or MIXED
format: The statement is logged as written.
ROW
format: The statement is logged
as a CREATE TABLE
statement followed by a series of insert-row events.
If the
CREATE
TABLE ... SELECT
statement fails, nothing is
logged. This includes the case that the destination table
exists and IF NOT EXISTS
is not given.
If the destination table exists and IF NOT
EXISTS
is given, MySQL 8.0 ignores
the statement completely; nothing is inserted or logged.
When statement-based replication is in use, MySQL
8.0 does not allow a
CREATE
TABLE ... SELECT
statement to make any changes in
tables other than the table that is created by the statement.
This is not an issue when using row-based replication, because
the statement is logged as a CREATE
TABLE
statement with any changes to table data logged
as row-insert events, rather than as the entire
CREATE
TABLE ... SELECT
.
The following statements support use of the
CURRENT_USER()
function to take
the place of the name of, and possibly the host for, an affected
user or a definer:
When binary logging is enabled and
CURRENT_USER()
or
CURRENT_USER
is used as the
definer in any of these statements, MySQL Server ensures that
the statement is applied to the same user on both the master and
the slave when the statement is replicated. In some cases, such
as statements that change passwords, the function reference is
expanded before it is written to the binary log, so that the
statement includes the user name. For all other cases, the name
of the current user on the master is replicated to the slave as
metadata, and the slave applies the statement to the current
user named in the metadata, rather than to the current user on
the slave.
Source and target tables for replication do not have to be identical. A table on the master can have more or fewer columns than the slave's copy of the table. In addition, corresponding table columns on the master and the slave can use different data types, subject to certain conditions.
Replication between tables which are partitioned differently from one another is not supported. See Section 17.5.1.24, “Replication and Partitioning”.
In all cases where the source and target tables do not have identical definitions, the database and table names must be the same on both the master and the slave. Additional conditions are discussed, with examples, in the following two sections.
You can replicate a table from the master to the slave such that the master and slave copies of the table have differing numbers of columns, subject to the following conditions:
Columns common to both versions of the table must be defined in the same order on the master and the slave.
(This is true even if both tables have the same number of columns.)
Columns common to both versions of the table must be defined before any additional columns.
This means that executing an ALTER
TABLE
statement on the slave where a new column
is inserted into the table within the range of columns
common to both tables causes replication to fail, as shown
in the following example:
Suppose that a table t
, existing on the
master and the slave, is defined by the following
CREATE TABLE
statement:
CREATE TABLE t ( c1 INT, c2 INT, c3 INT );
Suppose that the ALTER
TABLE
statement shown here is executed on the
slave:
ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;
The previous ALTER TABLE
is
permitted on the slave because the columns
c1
, c2
, and
c3
that are common to both versions of
table t
remain grouped together in both
versions of the table, before any columns that differ.
However, the following ALTER
TABLE
statement cannot be executed on the slave
without causing replication to break:
ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;
Replication fails after execution on the slave of the
ALTER TABLE
statement just
shown, because the new column cnew2
comes between columns common to both versions of
t
.
Each “extra” column in the version of the table having more columns must have a default value.
A column's default value is determined by a number of
factors, including its type, whether it is defined with a
DEFAULT
option, whether it is declared
as NULL
, and the server SQL mode in
effect at the time of its creation; for more information,
see Section 11.6, “Data Type Default Values”).
In addition, when the slave's copy of the table has more columns than the master's copy, each column common to the tables must use the same data type in both tables.
Examples. The following examples illustrate some valid and invalid table definitions:
More columns on the master. The following table definitions are valid and replicate correctly:
master>CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave>CREATE TABLE t1 (c1 INT, c2 INT);
The following table definitions would raise an error because the definitions of the columns common to both versions of the table are in a different order on the slave than they are on the master:
master>CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave>CREATE TABLE t1 (c2 INT, c1 INT);
The following table definitions would also raise an error because the definition of the extra column on the master appears before the definitions of the columns common to both versions of the table:
master>CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave>CREATE TABLE t1 (c1 INT, c2 INT);
More columns on the slave. The following table definitions are valid and replicate correctly:
master>CREATE TABLE t1 (c1 INT, c2 INT);
slave>CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
The following definitions raise an error because the columns common to both versions of the table are not defined in the same order on both the master and the slave:
master>CREATE TABLE t1 (c1 INT, c2 INT);
slave>CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);
The following table definitions also raise an error because the definition for the extra column in the slave's version of the table appears before the definitions for the columns which are common to both versions of the table:
master>CREATE TABLE t1 (c1 INT, c2 INT);
slave>CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
The following table definitions fail because the slave's
version of the table has additional columns compared to the
master's version, and the two versions of the table use
different data types for the common column
c2
:
master>CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave>CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
Corresponding columns on the master's and the slave's copies of the same table ideally should have the same data type. However, this is not always strictly enforced, as long as certain conditions are met.
It is usually possible to replicate from a column of a given
data type to another column of the same type and same size or
width, where applicable, or larger. For example, you can
replicate from a CHAR(10)
column to another
CHAR(10)
, or from a
CHAR(10)
column to a
CHAR(25)
column without any problems. In
certain cases, it also possible to replicate from a column
having one data type (on the master) to a column having a
different data type (on the slave); when the data type of the
master's version of the column is promoted to a type that
is the same size or larger on the slave, this is known as
attribute promotion.
Attribute promotion can be used with both statement-based and row-based replication, and is not dependent on the storage engine used by either the master or the slave. However, the choice of logging format does have an effect on the type conversions that are permitted; the particulars are discussed later in this section.
Whether you use statement-based or row-based replication, the slave's copy of the table cannot contain more columns than the master's copy if you wish to employ attribute promotion.
Statement-based replication.
When using statement-based replication, a simple rule of
thumb to follow is, “If the statement run on the
master would also execute successfully on the slave, it
should also replicate successfully”. In other words,
if the statement uses a value that is compatible with the
type of a given column on the slave, the statement can be
replicated. For example, you can insert any value that fits
in a TINYINT
column into a
BIGINT
column as well; it follows that,
even if you change the type of a TINYINT
column in the slave's copy of a table to
BIGINT
, any insert into that column on
the master that succeeds should also succeed on the slave,
since it is impossible to have a legal
TINYINT
value that is large enough to
exceed a BIGINT
column.
Row-based replication: attribute promotion and demotion. Row-based replication supports attribute promotion and demotion between smaller data types and larger types. It is also possible to specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values, as explained later in this section.
Lossy and non-lossy conversions. In the event that the target type cannot represent the value being inserted, a decision must be made on how to handle the conversion. If we permit the conversion but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit the source column value in the target column is a non-lossy conversion.
Type conversion modes (slave_type_conversions variable).
The setting of the slave_type_conversions
global server variable controls the type conversion mode
used on the slave. This variable takes a set of values from
the following list, which describes the effects of each mode
on the slave's type-conversion behavior:
In this mode, type conversions that would mean loss of information are permitted.
This does not imply that non-lossy conversions are
permitted, merely that only cases requiring either lossy
conversions or no conversion at all are permitted; for
example, enabling only this mode
permits an INT
column to be converted
to TINYINT
(a lossy conversion), but
not a TINYINT
column to an
INT
column (non-lossy). Attempting
the latter conversion in this case would cause
replication to stop with an error on the slave.
This mode permits conversions that do not require truncation or other special handling of the source value; that is, it permits conversions where the target type has a wider range than the source type.
Setting this mode has no bearing on whether lossy
conversions are permitted; this is controlled with the
ALL_LOSSY
mode. If only
ALL_NON_LOSSY
is set, but not
ALL_LOSSY
, then attempting a
conversion that would result in the loss of data (such
as INT
to TINYINT
,
or CHAR(25)
to
VARCHAR(20)
) causes the slave to stop
with an error.
When this mode is set, all supported type conversions are permitted, whether or not they are lossy conversions.
Treat promoted integer types as signed values (the default behavior).
Treat promoted integer types as unsigned values.
Treat promoted integer types as signed if possible, otherwise as unsigned.
When slave_type_conversions
is not
set, no attribute promotion or demotion is permitted;
this means that all columns in the source and target
tables must be of the same types.
This mode is the default.
When an integer type is promoted, its signedness is not
preserved. By default, the slave treats all such values as
signed. You can control this behavior using
ALL_SIGNED
,
ALL_UNSIGNED
, or both.
ALL_SIGNED
tells the slave to treat all
promoted integer types as signed;
ALL_UNSIGNED
instructs it to treat these as
unsigned. Specifying both causes the slave to treat the value
as signed if possible, otherwise to treat it as unsigned; the
order in which they are listed is not significant. Neither
ALL_SIGNED
nor
ALL_UNSIGNED
has any effect if at least one
of ALL_LOSSY
or
ALL_NONLOSSY
is not also used.
Changing the type conversion mode requires restarting the
slave with the new slave_type_conversions
setting.
Supported conversions. Supported conversions between different but similar data types are shown in the following list:
Between any of the integer types
TINYINT
,
SMALLINT
,
MEDIUMINT
,
INT
, and
BIGINT
.
This includes conversions between the signed and unsigned versions of these types.
Lossy conversions are made by truncating the source value
to the maximum (or minimum) permitted by the target
column. For ensuring non-lossy conversions when going from
unsigned to signed types, the target column must be large
enough to accommodate the range of values in the source
column. For example, you can demote TINYINT
UNSIGNED
non-lossily to
SMALLINT
, but not to
TINYINT
.
Between any of the decimal types
DECIMAL
,
FLOAT
,
DOUBLE
, and
NUMERIC
.
FLOAT
to DOUBLE
is a
non-lossy conversion; DOUBLE
to
FLOAT
can only be handled lossily. A
conversion from
DECIMAL(
to
M
,D
)DECIMAL(
where M'
,D'
)
and
D'
>=
D
(
)
is non-lossy; for any case where
M'
-D'
)
>=
(M
-D
,
M'
<
M
, or both, only a
lossy conversion can be made.
D'
<
D
For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded down according to the rounding rules defined for the server elsewhere in the documentation. See Section 12.25.4, “Rounding Behavior”, for information about how this is done for decimal types.
Between any of the string types
CHAR
,
VARCHAR
, and
TEXT
, including conversions
between different widths.
Conversion of a CHAR
,
VARCHAR
, or TEXT
to
a CHAR
, VARCHAR
, or
TEXT
column the same size or larger is
never lossy. Lossy conversion is handled by inserting only
the first N
characters of the
string on the slave, where N
is
the width of the target column.
Replication between columns using different character sets is not supported.
Between any of the binary data types
BINARY
,
VARBINARY
, and
BLOB
, including conversions
between different widths.
Conversion of a BINARY
,
VARBINARY
, or BLOB
to a BINARY
,
VARBINARY
, or BLOB
column the same size or larger is never lossy. Lossy
conversion is handled by inserting only the first
N
bytes of the string on the
slave, where N
is the width of
the target column.
Between any 2 BIT
columns
of any 2 sizes.
When inserting a value from a
BIT(
column into a
M
)BIT(
column, where M'
)
, the most
significant bits of the
M'
>
M
BIT(
columns are cleared (set to zero) and the
M'
)M
bits of the
BIT(
value
are set as the least significant bits of the
M
)BIT(
column.
M'
)
When inserting a value from a source
BIT(
column into a target
M
)BIT(
column, where M'
)
, the maximum
possible value for the
M'
<
M
BIT(
column is assigned; in other words, an
“all-set” value is assigned to the target
column.
M'
)
Conversions between types not in the previous list are not permitted.
If a DATA DIRECTORY
or INDEX
DIRECTORY
table option is used in a
CREATE TABLE
statement on the
master server, the table option is also used on the slave. This
can cause problems if no corresponding directory exists in the
slave host file system or if it exists but is not accessible to
the slave server. This can be overridden by using the
NO_DIR_IN_CREATE
server SQL
mode on the slave, which causes the slave to ignore the
DATA DIRECTORY
and INDEX
DIRECTORY
table options when replicating
CREATE TABLE
statements. The
result is that MyISAM
data and index files
are created in the table's database directory.
For more information, see Section 5.1.11, “Server SQL Modes”.
The DROP DATABASE
IF EXISTS
,
DROP TABLE IF
EXISTS
, and
DROP VIEW IF
EXISTS
statements are always replicated, even if the
database, table, or view to be dropped does not exist on the
master. This is to ensure that the object to be dropped no
longer exists on either the master or the slave, once the slave
has caught up with the master.
DROP ... IF EXISTS
statements for stored
programs (stored procedures and functions, triggers, and events)
are also replicated, even if the stored program to be dropped
does not exist on the master.
With statement-based replication, values are converted from decimal to binary. Because conversions between decimal and binary representations of them may be approximate, comparisons involving floating-point values are inexact. This is true for operations that use floating-point values explicitly, or that use values that are converted to floating-point implicitly. Comparisons of floating-point values might yield different results on master and slave servers due to differences in computer architecture, the compiler used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression Evaluation”, and Section B.4.4.8, “Problems with Floating-Point Values”.
Some forms of the FLUSH
statement
are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS
and
FLUSH TABLES WITH READ LOCK
. For
a syntax example, see Section 13.7.8.3, “FLUSH Statement”. The
FLUSH TABLES
,
ANALYZE TABLE
,
OPTIMIZE TABLE
, and
REPAIR TABLE
statements are
written to the binary log and thus replicated to slaves. This is
not normally a problem because these statements do not modify
table data.
However, this behavior can cause difficulties under certain
circumstances. If you replicate the privilege tables in the
mysql
database and update those tables
directly without using GRANT
, you
must issue a FLUSH PRIVILEGES
on
the slaves to put the new privileges into effect. In addition,
if you use FLUSH TABLES
when
renaming a MyISAM
table that is part of a
MERGE
table, you must issue
FLUSH TABLES
manually on the
slaves. These statements are written to the binary log unless
you specify NO_WRITE_TO_BINLOG
or its alias
LOCAL
.
Certain functions do not replicate well under some conditions:
The USER()
,
CURRENT_USER()
(or
CURRENT_USER
),
UUID()
,
VERSION()
, and
LOAD_FILE()
functions are
replicated without change and thus do not work reliably on
the slave unless row-based replication is enabled. (See
Section 17.2.1, “Replication Formats”.)
USER()
and
CURRENT_USER()
are
automatically replicated using row-based replication when
using MIXED
mode, and generate a warning
in STATEMENT
mode. (See also
Section 17.5.1.8, “Replication of CURRENT_USER()”.) This
is also true for VERSION()
and RAND()
.
For NOW()
, the binary log
includes the timestamp. This means that the value
as returned by the call to this function on the
master is replicated to the slave. To avoid
unexpected results when replicating between MySQL servers in
different time zones, set the time zone on both master and
slave. For more information, see
Section 17.5.1.32, “Replication and Time Zones”.
To explain the potential problems when replicating between
servers which are in different time zones, suppose that the
master is located in New York, the slave is located in
Stockholm, and both servers are using local time. Suppose
further that, on the master, you create a table
mytable
, perform an
INSERT
statement on this
table, and then select from the table, as shown here:
mysql>CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec) mysql>INSERT INTO mytable VALUES ( NOW() );
Query OK, 1 row affected (0.00 sec) mysql>SELECT * FROM mytable;
+---------------------+ | mycol | +---------------------+ | 2009-09-01 12:00:00 | +---------------------+ 1 row in set (0.00 sec)
Local time in Stockholm is 6 hours later than in New York;
so, if you issue SELECT NOW()
on the
slave at that exact same instant, the value
2009-09-01 18:00:00
is returned. For this
reason, if you select from the slave's copy of
mytable
after the
CREATE TABLE
and
INSERT
statements just shown
have been replicated, you might expect
mycol
to contain the value
2009-09-01 18:00:00
. However, this is not
the case; when you select from the slave's copy of
mytable
, you obtain exactly the same
result as on the master:
mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)
Unlike NOW()
, the
SYSDATE()
function is not
replication-safe because it is not affected by SET
TIMESTAMP
statements in the binary log and is
nondeterministic if statement-based logging is used. This is
not a problem if row-based logging is used.
An alternative is to use the
--sysdate-is-now
option to
cause SYSDATE()
to be an
alias for NOW()
. This must be
done on the master and the slave to work correctly. In such
cases, a warning is still issued by this function, but can
safely be ignored as long as
--sysdate-is-now
is used on
both the master and the slave.
SYSDATE()
is automatically
replicated using row-based replication when using
MIXED
mode, and generates a warning in
STATEMENT
mode.
The following restriction applies to
statement-based replication only, not to row-based
replication. The
GET_LOCK()
,
RELEASE_LOCK()
,
IS_FREE_LOCK()
, and
IS_USED_LOCK()
functions that
handle user-level locks are replicated without the slave
knowing the concurrency context on the master. Therefore,
these functions should not be used to insert into a master
table because the content on the slave would differ. For
example, do not issue a statement such as INSERT
INTO mytable VALUES(GET_LOCK(...))
.
These functions are automatically replicated using row-based
replication when using MIXED
mode, and
generate a warning in STATEMENT
mode.
As a workaround for the preceding limitations when
statement-based replication is in effect, you can use the
strategy of saving the problematic function result in a user
variable and referring to the variable in a later statement. For
example, the following single-row
INSERT
is problematic due to the
reference to the UUID()
function:
INSERT INTO t VALUES(UUID());
To work around the problem, do this instead:
SET @my_uuid = UUID(); INSERT INTO t VALUES(@my_uuid);
That sequence of statements replicates because the value of
@my_uuid
is stored in the binary log as a
user-variable event prior to the
INSERT
statement and is available
for use in the INSERT
.
The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you can do this:
SET @my_uuid1 = UUID(); @my_uuid2 = UUID(); INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);
However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For example, you cannot convert the following statement to one in which a given individual user variable is associated with each row:
INSERT INTO t2 SELECT UUID(), * FROM t1;
Within a stored function, RAND()
replicates correctly as long as it is invoked only once during
the execution of the function. (You can consider the function
execution timestamp and random number seed as implicit inputs
that are identical on the master and slave.)
The FOUND_ROWS()
and
ROW_COUNT()
functions are not
replicated reliably using statement-based replication. A
workaround is to store the result of the function call in a user
variable, and then use that in the
INSERT
statement. For example, if
you wish to store the result in a table named
mytable
, you might normally do so like this:
SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1; INSERT INTO mytable VALUES( FOUND_ROWS() );
However, if you are replicating mytable
, you
should use SELECT
... INTO
, and then store the variable in the table,
like this:
SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1; INSERT INTO mytable VALUES(@found_rows);
In this way, the user variable is replicated as part of the context, and applied on the slave correctly.
These functions are automatically replicated using row-based
replication when using MIXED
mode, and
generate a warning in STATEMENT
mode. (Bug
#12092, Bug #30244)
MySQL 8.0 permits fractional seconds for
TIME
,
DATETIME
, and
TIMESTAMP
values, with up to
microseconds (6 digits) precision. See
Section 11.2.6, “Fractional Seconds in Time Values”.
Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored procedures and functions, triggers, and events) provides the following characteristics:
The effects of the feature are always replicated.
The following statements are replicated using statement-based replication:
However, the effects of features created, modified, or dropped using these statements are replicated using row-based replication.
Attempting to replicate invoked features using statement-based replication produces the warning Statement is not safe to log in statement format. For example, trying to replicate a UDF with statement-based replication generates this warning because it currently cannot be determined by the MySQL server whether the UDF is deterministic. If you are absolutely certain that the invoked feature's effects are deterministic, you can safely disregard such warnings.
In the case of CREATE EVENT
and ALTER EVENT
:
The status of the event is set to
SLAVESIDE_DISABLED
on the slave
regardless of the state specified (this does not apply
to DROP EVENT
).
The master on which the event was created is identified
on the slave by its server ID. The
ORIGINATOR
column in
INFORMATION_SCHEMA.EVENTS
stores this information. See
Section 25.13, “The INFORMATION_SCHEMA EVENTS Table”, and
Section 13.7.7.18, “SHOW EVENTS Statement”, for more information.
The feature implementation resides on the slave in a renewable state so that if the master fails, the slave can be used as the master without loss of event processing.
To determine whether there are any scheduled events on a MySQL
server that were created on a different server (that was acting
as a replication master), query the
INFORMATION_SCHEMA.EVENTS
table in
a manner similar to what is shown here:
SELECT EVENT_SCHEMA, EVENT_NAME FROM INFORMATION_SCHEMA.EVENTS WHERE STATUS = 'SLAVESIDE_DISABLED';
Alternatively, you can use the SHOW
EVENTS
statement, like this:
SHOW EVENTS WHERE STATUS = 'SLAVESIDE_DISABLED';
When promoting a replication slave having such events to a
replication master, you must enable each event using
ALTER EVENT
, where
event_name
ENABLEevent_name
is the name of the event.
If more than one master was involved in creating events on this
slave, and you wish to identify events that were created only on
a given master having the server ID
master_id
, modify the previous query
on the EVENTS
table to include the
ORIGINATOR
column, as shown here:
SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
FROM INFORMATION_SCHEMA.EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED'
AND ORIGINATOR = 'master_id
'
You can employ ORIGINATOR
with the
SHOW EVENTS
statement in a
similar fashion:
SHOW EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED'
AND ORIGINATOR = 'master_id
'
Before enabling events that were replicated from the master, you
should disable the MySQL Event Scheduler on the slave (using a
statement such as SET GLOBAL event_scheduler =
OFF;
), run any necessary ALTER
EVENT
statements, restart the server, then re-enable
the Event Scheduler on the slave afterward (using a statement
such as SET GLOBAL event_scheduler = ON;
)-
If you later demote the new master back to being a replication
slave, you must disable manually all events enabled by the
ALTER EVENT
statements. You can
do this by storing in a separate table the event names from the
SELECT
statement shown
previously, or using ALTER EVENT
statements to rename the events with a common prefix such as
replicated_
to identify them.
If you rename the events, then when demoting this server back to
being a replication slave, you can identify the events by
querying the EVENTS
table, as shown
here:
SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event' FROM INFORMATION_SCHEMA.EVENTS WHERE INSTR(EVENT_NAME, 'replicated_') = 1;
Before MySQL 8.0, an update to a JSON column was always written to the binary log as the complete document. In MySQL 8.0, it is possible to log partial updates to JSON documents (see Partial Updates of JSON Values), which is more efficient. The logging behavior depends on the format used, as described here:
Statement-based replication. JSON partial updates are always logged as partial updates. This cannot be disabled when using statement-based logging.
Row-based replication.
JSON partial updates are not logged as such by default, but
instead are logged as complete documents. To enable logging of
partial updates, set
binlog_row_value_options=PARTIAL_JSON
.
If a replication master has this variable set, partial updates
received from that master are handled and applied by a
replication slave regardless of the slave's own setting for
the variable.
Servers running MySQL 8.0.2 or earlier do not recognize the log
events used for JSON partial updates. For this reason, when
replicating to such a server from a server running MySQL 8.0.3
or later, binlog_row_value_options
must be
disabled on the master by setting this variable to
''
(empty string). See the description of
this variable for more information.
Statement-based replication of LIMIT
clauses
in DELETE
,
UPDATE
, and
INSERT ...
SELECT
statements is unsafe since the order of the
rows affected is not defined. (Such statements can be replicated
correctly with statement-based replication only if they also
contain an ORDER BY
clause.) When such a
statement is encountered:
When using STATEMENT
mode, a warning that
the statement is not safe for statement-based replication is
now issued.
When using STATEMENT
mode, warnings are
issued for DML statements containing
LIMIT
even when they also have an
ORDER BY
clause (and so are made
deterministic). This is a known issue. (Bug #42851)
When using MIXED
mode, the statement is
now automatically replicated using row-based mode.
LOAD DATA
is considered unsafe
for statement-based logging (see
Section 17.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”). When
binlog_format=MIXED
is set, the
statement is logged in row-based format. When
binlog_format=STATEMENT
is set,
note that LOAD DATA
does not
generate a warning, unlike other unsafe statements.
If you do use LOAD DATA
when
binlog_format=STATEMENT
is set,
a temporary file containing the data is created on the
replication slave where the changes are applied. The slave then
uses a LOAD DATA INFILE
statement to apply
the changes. If binary log encryption is active on the server,
note that this temporary file is not encrypted. When encryption
is required, be sure to use row-based or mixed binary logging
format instead, which do not create the temporary files.
If a PRIVILEGE_CHECKS_USER
account has been
used to help secure the replication channel (see
Section 17.3.3, “Replication Privilege Checks”), it is strongly
recommended that you log LOAD
DATA
operations using row-based binary logging
(binlog_format=ROW
). If
REQUIRE_ROW_FORMAT
is set for the channel,
row-based binary logging is required. With this logging format,
the FILE
privilege is not needed
to execute the event, so do not give the
PRIVILEGE_CHECKS_USER
account this privilege.
If you need to recover from a replication error involving a
LOAD DATA INFILE
operation logged in
statement format, and the replicated event is trusted, you could
grant the FILE
privilege to the
PRIVILEGE_CHECKS_USER
account temporarily,
removing it after the replicated event has been applied.
When mysqlbinlog reads log events for
LOAD DATA
statements logged in
statement-based format, a generated local file is created in a
temporary directory. These temporary files are not automatically
removed by mysqlbinlog or any other MySQL
program. If you do use LOAD DATA
statements with statement-based binary logging, you should
delete the temporary files yourself after you no longer need the
statement log. For more information, see
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.
max_allowed_packet
sets an
upper limit on the size of any single message between the MySQL
server and clients, including replication slaves. If you are
replicating large column values (such as might be found in
TEXT
or
BLOB
columns) and
max_allowed_packet
is too small
on the master, the master fails with an error, and the slave
shuts down the I/O thread. If
max_allowed_packet
is too small
on the slave, this also causes the slave to stop the I/O thread.
Row-based replication currently sends all columns and column
values for updated rows from the master to the slave, including
values of columns that were not actually changed by the update.
This means that, when you are replicating large column values
using row-based replication, you must take care to set
max_allowed_packet
large enough
to accommodate the largest row in any table to be replicated,
even if you are replicating updates only, or you are inserting
only relatively small values.
On a multi-threaded slave (with
slave_parallel_workers > 0
),
ensure that the
slave_pending_jobs_size_max
system variable is set to a value equal to or greater than the
setting for the
max_allowed_packet
system
variable on the master. The default setting for
slave_pending_jobs_size_max
,
128M, is twice the default setting for
max_allowed_packet
, which is
64M. max_allowed_packet
limits
the packet size that the master will send, but the addition of
an event header can produce a binary log event exceeding this
size. Also, in row-based replication, a single event can be
significantly larger than the
max_allowed_packet
size,
because the value of
max_allowed_packet
only limits
each column of the table.
The replication slave actually accepts packets up to the limit
set by its
slave_max_allowed_packet
setting, which defaults to the maximum setting of 1GB, to
prevent a replication failure due to a large packet. However,
the value of
slave_pending_jobs_size_max
controls the memory that is made available on the slave to hold
incoming packets. The specified memory is shared among all the
slave worker queues.
The value of
slave_pending_jobs_size_max
is
a soft limit, and if an unusually large event (consisting of one
or multiple packets) exceeds this size, the transaction is held
until all the slave workers have empty queues, and then
processed. All subsequent transactions are held until the large
transaction has been completed. So although unusual events
larger than
slave_pending_jobs_size_max
can
be processed, the delay to clear the queues of all the slave
workers and the wait to queue subsequent transactions can cause
lag on the replication slave and decreased concurrency of the
slave workers.
slave_pending_jobs_size_max
should therefore be set high enough to accommodate most expected
event sizes.
When a master server shuts down and restarts, its
MEMORY
tables become empty. To
replicate this effect to slaves, the first time that the master
uses a given MEMORY
table after
startup, it logs an event that notifies slaves that the table
must be emptied by writing a
DELETE
statement for that table
to the binary log. This generated event is identifiable by a
comment in the binary log, and if GTIDs are in use on the
server, it has a GTID assigned.
When a slave server shuts down and restarts, its
MEMORY
tables become empty. This
causes the slave to be out of synchrony with the master and may
lead to other failures or cause the slave to stop:
Row-format updates and deletes received from the master may
fail with Can't find record in
'
.
memory_table
'
Statements such as
INSERT INTO
... SELECT FROM
may insert
a different set of rows on the master and slave.
memory_table
The safe way to restart a slave that is replicating
MEMORY
tables is to first drop or
delete all rows from the MEMORY
tables on the master and wait until those changes have
replicated to the slave. Then it is safe to restart the slave.
An alternative restart method may apply in some cases. When
binlog_format=ROW
, you can
prevent the slave from stopping if you set
slave_exec_mode=IDEMPOTENT
before you start the slave again. This allows the slave to
continue to replicate, but its
MEMORY
tables will still be
different from those on the master. This can be okay if the
application logic is such that the contents of
MEMORY
tables can be safely lost
(for example, if the MEMORY
tables
are used for caching).
slave_exec_mode=IDEMPOTENT
applies globally to all tables, so it may hide other replication
errors in non-MEMORY
tables.
(The method just described is not applicable in NDB Cluster,
where slave_exec_mode
is always
IDEMPOTENT
, and cannot be changed.)
The size of MEMORY
tables is
limited by the value of the
max_heap_table_size
system
variable, which is not replicated (see
Section 17.5.1.38, “Replication and Variables”). A change in
max_heap_table_size
takes effect for
MEMORY
tables that are created or updated
using ALTER TABLE
... ENGINE = MEMORY
or TRUNCATE
TABLE
following the change, or for all
MEMORY
tables following a server
restart. If you increase the value of this variable on the
master without doing so on the slave, it becomes possible for a
table on the master to grow larger than its counterpart on the
slave, leading to inserts that succeed on the master but fail on
the slave with Table is full errors. This
is a known issue (Bug #48666). In such cases, you must set the
global value of
max_heap_table_size
on the
slave as well as on the master, then restart replication. It is
also recommended that you restart both the master and slave
MySQL servers, to insure that the new value takes complete
(global) effect on each of them.
See Section 16.3, “The MEMORY Storage Engine”, for more
information about MEMORY
tables.
Data modification statements made to tables in the
mysql
schema are replicated according to the
value of binlog_format
; if this
value is MIXED
, these statements are
replicated using row-based format. However, statements that
would normally update this information indirectly—such
GRANT
,
REVOKE
, and statements
manipulating triggers, stored routines, and views—are
replicated to slaves using statement-based replication.
It is possible for the data on the master and slave to become
different if a statement is written in such a way that the data
modification is nondeterministic; that is, left up the query
optimizer. (In general, this is not a good practice, even
outside of replication.) Examples of nondeterministic statements
include DELETE
or
UPDATE
statements that use
LIMIT
with no ORDER BY
clause; see Section 17.5.1.18, “Replication and LIMIT”, for a
detailed discussion of these.
Replication is supported between partitioned tables as long as they use the same partitioning scheme and otherwise have the same structure except where an exception is specifically allowed (see Section 17.5.1.9, “Replication with Differing Table Definitions on Master and Slave”).
Replication between tables having different partitioning is
generally not supported. This because statements (such as
ALTER
TABLE ... DROP PARTITION
) acting directly on
partitions in such cases may produce different results on master
and slave. In the case where a table is partitioned on the
master but not on the slave, any statements operating on
partitions on the master's copy of the slave fail on the
slave. When the slave's copy of the table is partitioned
but the master's copy is not, statements acting on
partitions cannot be run on the master without causing errors
there.
Due to these dangers of causing replication to fail entirely (on account of failed statements) and of inconsistencies (when the result of a partition-level SQL statement produces different results on master and slave), we recommend that insure that the partitioning of any tables to be replicated from the master is matched by the slave's versions of these tables.
When used on a corrupted or otherwise damaged table, it is
possible for the REPAIR TABLE
statement to delete rows that cannot be recovered. However, any
such modifications of table data performed by this statement are
not replicated, which can cause master and slave to lose
synchronization. For this reason, in the event that a table on
the master becomes damaged and you use
REPAIR TABLE
to repair it, you
should first stop replication (if it is still running) before
using REPAIR TABLE
, then
afterward compare the master's and slave's copies of
the table and be prepared to correct any discrepancies manually,
before restarting replication.
You can encounter problems when you attempt to replicate from an
older master to a newer slave and you make use of identifiers on
the master that are reserved words in the newer MySQL version
running on the slave. For example, a table column named
rank
on a MySQL 5.7 master that is
replicating to a MySQL 8.0 slave could cause a
problem because RANK
is a reserved word
beginning in MySQL 8.0.
Replication can fail in such cases with Error 1064
You have an error in your SQL syntax...,
even if a database or table named using the reserved
word or a table having a column named using the reserved word is
excluded from replication. This is due to the fact
that each SQL event must be parsed by the slave prior to
execution, so that the slave knows which database object or
objects would be affected. Only after the event is parsed can
the slave apply any filtering rules defined by
--replicate-do-db
,
--replicate-do-table
,
--replicate-ignore-db
, and
--replicate-ignore-table
.
To work around the problem of database, table, or column names on the master which would be regarded as reserved words by the slave, do one of the following:
Use one or more ALTER TABLE
statements on the master to change the names of any database
objects where these names would be considered reserved words
on the slave, and change any SQL statements that use the old
names to use the new names instead.
In any SQL statements using these database object names,
write the names as quoted identifiers using backtick
characters (`
).
For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.
It is safe to shut down a master server and restart it later.
When a slave loses its connection to the master, the slave tries
to reconnect immediately and retries periodically if that fails.
The default is to retry every 60 seconds. This may be changed
with the CHANGE MASTER TO
statement. A slave also is able to deal with network
connectivity outages. However, the slave notices the network
outage only after receiving no data from the master for
slave_net_timeout
seconds. If
your outages are short, you may want to decrease
slave_net_timeout
. See
Section 17.4.2, “Handling an Unexpected Halt of a Replication Slave”.
An unclean shutdown (for example, a crash) on the master side
can result in the master binary log having a final position less
than the most recent position read by the slave, due to the
master binary log file not being flushed. This can cause the
slave not to be able to replicate when the master comes back up.
Setting sync_binlog=1
in the
master my.cnf
file helps to minimize this
problem because it causes the master to flush its binary log
more frequently. For the greatest possible durability and
consistency in a replication setup using
InnoDB
with transactions, you should also set
innodb_flush_log_at_trx_commit=1
.
With this setting, the contents of the InnoDB
redo log buffer are written out to the log file at each
transaction commit and the log file is flushed to disk. Note
that the durability of transactions is still not guaranteed with
this setting, because operating systems or disk hardware may
tell mysqld that the flush-to-disk operation
has taken place, even though it has not.
Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful that the slave does not have temporary tables open; see Section 17.5.1.30, “Replication and Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk before the problem occurred:
For transactions, the slave commits and then updates
relay-log.info
. If a crash occurs
between these two operations, relay log processing will have
proceeded further than the information file indicates and
the slave will re-execute the events from the last
transaction in the relay log after it has been restarted.
A similar problem can occur if the slave updates
relay-log.info
but the server host
crashes before the write has been flushed to disk. To
minimize the chance of this occurring, set
sync_relay_log_info=1
in
the slave my.cnf
file. Setting
sync_relay_log_info
to 0
causes no writes to be forced to disk and the server relies
on the operating system to flush the file from time to time.
The fault tolerance of your system for these types of problems is greatly increased if you have a good uninterruptible power supply.
If a statement produces the same error (identical error code) on both the master and the slave, the error is logged, but replication continues.
If a statement produces different errors on the master and the
slave, the slave SQL thread terminates, and the slave writes a
message to its error log and waits for the database
administrator to decide what to do about the error. This
includes the case that a statement produces an error on the
master or the slave, but not both. To address the issue, connect
to the slave manually and determine the cause of the problem.
SHOW SLAVE STATUS
is useful for
this. Then fix the problem and run START
SLAVE
. For example, you might need to create a
nonexistent table before you can start the slave again.
If a temporary error is recorded in the slave's error log, you do not necessarily have to take any action suggested in the quoted error message. Temporary errors should be handled by the client retrying the transaction. For example, if the slave SQL thread records a temporary error relating to a deadlock, you do not need to restart the transaction manually on the slave, unless the slave SQL thread subsequently terminates with a nontemporary error message.
If this error code validation behavior is not desirable, some or
all errors can be masked out (ignored) with the
--slave-skip-errors
option.
For nontransactional storage engines such as
MyISAM
, it is possible to have a statement
that only partially updates a table and returns an error code.
This can happen, for example, on a multiple-row insert that has
one row violating a key constraint, or if a long update
statement is killed after updating some of the rows. If that
happens on the master, the slave expects execution of the
statement to result in the same error code. If it does not, the
slave SQL thread stops as described previously.
If you are replicating between tables that use different storage
engines on the master and slave, keep in mind that the same
statement might produce a different error when run against one
version of the table, but not the other, or might cause an error
for one version of the table, but not the other. For example,
since MyISAM
ignores foreign key constraints,
an INSERT
or
UPDATE
statement accessing an
InnoDB
table on the master might cause a
foreign key violation but the same statement performed on a
MyISAM
version of the same table on the slave
would produce no such error, causing replication to stop.
Using different server SQL mode settings on the master and the
slave may cause the same INSERT
statements to be handled differently on the master and the
slave, leading the master and slave to diverge. For best
results, you should always use the same server SQL mode on the
master and on the slave. This advice applies whether you are
using statement-based or row-based replication.
If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely to cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different in the master's and slave's copies of a given table. It may also cause inserts into partitioned tables that succeed on the master to fail on the slave.
For more information, see Section 5.1.11, “Server SQL Modes”.
In MySQL 8.0, when
binlog_format
is set to
ROW
or MIXED
, statements
that exclusively use temporary tables are not logged on the
master, and therefore the temporary tables are not replicated.
Statements that involve a mix of temporary and nontemporary
tables are logged on the master only for the operations on
nontemporary tables, and the operations on temporary tables are
not logged. This means that there are never any temporary tables
on the slave to be lost in the event of an unplanned shutdown by
the slave. For more information about row-based replication and
temporary tables, see
Row-based logging of temporary tables.
When binlog_format
is set to
STATEMENT
, operations on temporary tables are
logged on the master and replicated on the slave, provided that
the statements involving temporary tables can be logged safely
using statement-based format. In this situation, loss of
replicated temporary tables on the slave can be an issue. In
statement-based replication mode,
CREATE TEMPORARY
TABLE
and
DROP TEMPORARY
TABLE
statements cannot be used inside a transaction,
procedure, function, or trigger when GTIDs are in use on the
server (that is, when the
enforce_gtid_consistency
system
variable is set to ON
). They can be used
outside these contexts when GTIDs are in use, provided that
autocommit=1
is set.
Because of the differences in behavior between row-based or
mixed replication mode and statement-based replication mode
regarding temporary tables, you cannot switch the replication
format at runtime, if the change applies to a context (global or
session) that contains any open temporary tables. For more
details, see the description of the
binlog_format
option.
Safe slave shutdown when using temporary tables. In statement-based replication mode, temporary tables are replicated except in the case where you stop the slave server (not just the slave threads) and you have replicated temporary tables that are open for use in updates that have not yet been executed on the slave. If you stop the slave server, the temporary tables needed by those updates are no longer available when the slave is restarted. To avoid this problem, do not shut down the slave while it has temporary tables open. Instead, use the following procedure:
Issue a STOP SLAVE SQL_THREAD
statement.
Use SHOW STATUS
to check the
value of the
Slave_open_temp_tables
variable.
If the value is not 0, restart the slave SQL thread with
START SLAVE SQL_THREAD
and repeat the
procedure later.
When the value is 0, issue a mysqladmin shutdown command to stop the slave.
Temporary tables and replication options.
By default, with statement-based replication, all temporary
tables are replicated; this happens whether or not there are
any matching --replicate-do-db
,
--replicate-do-table
, or
--replicate-wild-do-table
options in effect. However, the
--replicate-ignore-table
and
--replicate-wild-ignore-table
options are honored for temporary tables. The exception is
that to enable correct removal of temporary tables at the end
of a session, a replication slave always replicates a
DROP TEMPORARY TABLE IF EXISTS
statement,
regardless of any exclusion rules that would normally apply
for the specified table.
A recommended practice when using statement-based replication is
to designate a prefix for exclusive use in naming temporary
tables that you do not want replicated, then employ a
--replicate-wild-ignore-table
option to match that prefix. For example, you might give all
such tables names beginning with norep
(such
as norepmytable
,
norepyourtable
, and so on), then use
--replicate-wild-ignore-table=norep%
to prevent them from being replicated.
The global system variable
slave_transaction_retries
sets
the maximum number of times for applier threads on a
single-threaded or multithreaded replication slave to
automatically retry failed transactions before stopping.
Transactions are automatically retried when the SQL thread fails
to execute them because of an InnoDB
deadlock, or when the transaction's execution time exceeds the
InnoDB
innodb_lock_wait_timeout
value.
If a transaction has a non-temporary error that will prevent it
from ever succeeding, it is not retried.
The default setting for
slave_transaction_retries
is
10, meaning that a failing transaction with an apparently
temporary error is retried 10 times before the applier thread
stops. Setting the variable to 0 disables automatic retrying of
transactions. On a multithreaded slave, the specified number of
transaction retries can take place on all applier threads of all
channels. The Performance Schema table
replication_applier_status
shows
the total number of transaction retries that took place on each
replication channel, in the
COUNT_TRANSACTIONS_RETRIES
column.
The process of retrying transactions can cause lag on a
replication slave or on a Group Replication group member, which
can be configured as a single-threaded or multithreaded slave.
The Performance Schema table
replication_applier_status_by_worker
shows detailed information on transaction retries by the applier
threads on a single-threaded or multithreaded slave. This data
includes timestamps showing how long it took the applier thread
to apply the last transaction from start to finish (and when the
transaction currently in progress was started), and how long
this was after the commit on the original master and the
immediate master. The data also shows the number of retries for
the last transaction and the transaction currently in progress,
and enables you to identify the transient errors that caused the
transactions to be retried. You can use this information to see
whether transaction retries are the cause of replication lag,
and investigate the root cause of the failures that led to the
retries.
By default, master and slave servers assume that they are in the
same time zone. If you are replicating between servers in
different time zones, the time zone must be set on both master
and slave. Otherwise, statements depending on the local time on
the master are not replicated properly, such as statements that
use the NOW()
or
FROM_UNIXTIME()
functions.
Verify that your combination of settings for the system time
zone (system_time_zone
), server
current time zone (the global value of
time_zone
), and per-session
time zones (the session value of
time_zone
) on the master and
slave is producing the correct results. In particular, if the
time_zone
system variable is
set to the value SYSTEM
, indicating that the
server time zone is the same as the system time zone, this can
cause the master and slave to apply different time zones. For
example, a master could write the following statement in the
binary log:
SET @@session.time_zone='SYSTEM';
If this master and its slave have a different setting for their
system time zones, this statement can produce unexpected results
on the slave, even if the slave's global
time_zone
value has been set to
match the master's. For an explanation of MySQL Server's time
zone settings, and how to change them, see
Section 5.1.14, “MySQL Server Time Zone Support”.
See also Section 17.5.1.14, “Replication and System Functions”.
Inconsistencies in the sequence of transactions that have been executed from the relay log can occur depending on your replication configuration. This section explains how to avoid inconsistencies and solve any problems they cause.
The following types of inconsistencies can exist:
Half-applied transactions. A transaction which updates non-transactional tables has applied some but not all of its changes.
Gaps. A gap in the externalized
transaction set appears when, given an ordered sequence of
transactions, a transaction that is later in the sequence is
applied before some other transaction that is prior in the
sequence. Gaps can only appear when using a multithreaded
slave. To avoid gaps occurring, set
slave_preserve_commit_order=1
.
Up to and including MySQL 8.0.18, this setting requires that
binary logging (log_bin
)
and slave update logging
(log_slave_updates
) are
also enabled, which are the default settings from MySQL 8.0.
From MySQL 8.0.19, binary logging and slave update logging
are not required on the slave to set
slave_preserve_commit_order=1
,
and can be disabled if wanted. In all releases, setting
slave_preserve_commit_order=1
requires that
slave_parallel_type
is set
to LOGICAL_CLOCK
, which is
not the default setting. Note that in
some specific situations, as listed in the description for
slave_preserve_commit_order
,
setting
slave_preserve_commit_order=1
cannot preserve commit order on the slave, so in these cases
gaps might still appear in the sequence of transactions that
have been executed from the slave's relay log.
Master log position lag. Even in the
absence of gaps, it is possible that transactions after
Exec_master_log_pos
have been applied.
That is, all transactions up to point N
have been applied, and no transactions after
N
have been applied, but
Exec_master_log_pos
has a value smaller
than N
. In this situation,
Exec_master_log_pos
is a “low-water
mark” of the transactions applied, and lags behind
the position of the most recently applied transaction. This
can only happen on multithreaded slaves. Enabling
slave_preserve_commit_order
does not prevent master log position lag.
The following scenarios are relevant to the existence of half-applied transactions, gaps, and master log position lag:
While slave threads are running, there may be gaps and half-applied transactions.
mysqld shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave gaps and half-applied transactions.
KILL
of replication threads
(the SQL thread when using a single-threaded slave, the
coordinator thread when using a multithreaded slave). This
aborts ongoing transactions and may leave gaps and
half-applied transactions.
Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction is half-applied. When using a multithreaded slave, workers which have not received an error complete their queues, so it may take time to stop all threads.
STOP SLAVE
when using a
multithreaded slave. After issuing STOP
SLAVE
, the slave waits for any gaps to be filled
and then updates Exec_master_log_pos
.
This ensures it never leaves gaps or master log position
lag, unless any of the cases above applies, in other words,
before STOP SLAVE
completes,
either an error happens, or another thread issues
KILL
, or the server restarts.
In these cases, STOP SLAVE
returns successfully.
If the last transaction in the relay log is only
half-received and the multithreaded slave coordinator has
started to schedule the transaction to a worker, then
STOP SLAVE
waits up to 60
seconds for the transaction to be received. After this
timeout, the coordinator gives up and aborts the
transaction. If the transaction is mixed, it may be left
half-completed.
STOP SLAVE
when using a
single-threaded slave. If the ongoing transaction only
updates transactional tables, it is rolled back and
STOP SLAVE
stops immediately.
If the ongoing transaction is mixed,
STOP SLAVE
waits up to 60
seconds for the transaction to complete. After this timeout,
it aborts the transaction, so it may be left half-completed.
The global variable
rpl_stop_slave_timeout
is
unrelated to the process of stopping the replication threads. It
only makes the client that issues STOP
SLAVE
return to the client, but the replication
threads continue to try to stop.
If a replication channel has gaps, it has the following consequences:
The slave database is in a state that may never have existed on the master.
The field Exec_master_log_pos
in
SHOW SLAVE STATUS
is only a
“low-water mark”. In other words, transactions
appearing before the position are guaranteed to have
committed, but transactions after the position may have
committed or not.
CHANGE MASTER TO
statements
for that channel fail with an error, unless the applier
threads are running and the CHANGE
MASTER TO
statement only sets receiver options.
If mysqld is started with
--relay-log-recovery
, no
recovery is done for that channel, and a warning is printed.
If mysqldump is used with
--dump-slave
, it does not
record the existence of gaps; thus it prints
CHANGE MASTER TO
with
RELAY_LOG_POS
set to the “low-water
mark” position in
Exec_master_log_pos
.
After applying the dump on another server, and starting the
replication threads, transactions appearing after the
position are replicated again. Note that this is harmless if
GTIDs are enabled (however, in that case it is not
recommended to use
--dump-slave
).
If a replication channel has master log position lag but no gaps, cases 2 to 5 above apply, but case 1 does not.
The master log position information is persisted in binary
format in the internal table
mysql.slave_worker_info
.
START SLAVE
[SQL_THREAD]
always consults this information so that
it applies only the correct transactions. This remains true even
if slave_parallel_workers
has
been changed to 0 before START
SLAVE
, and even if START
SLAVE
is used with UNTIL
clauses.
START SLAVE UNTIL
SQL_AFTER_MTS_GAPS
only applies as many transactions
as needed in order to fill in the gaps. If
START SLAVE
is used with
UNTIL
clauses that tell it to stop before it
has consumed all the gaps, then it leaves remaining gaps.
RESET SLAVE
removes the relay
logs and resets the replication position. Thus issuing
RESET SLAVE
on a slave with
gaps means the slave loses any information about the gaps,
without correcting the gaps.
Mixing transactional and nontransactional statements within the same transaction. In general, you should avoid transactions that update both transactional and nontransactional tables in a replication environment. You should also avoid using any statement that accesses both transactional (or temporary) and nontransactional tables and writes to any of them.
The server uses these rules for binary logging:
If the initial statements in a transaction are nontransactional, they are written to the binary log immediately. The remaining statements in the transaction are cached and not written to the binary log until the transaction is committed. (If the transaction is rolled back, the cached statements are written to the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they are discarded.)
For statement-based logging, logging of nontransactional
statements is affected by the
binlog_direct_non_transactional_updates
system variable. When this variable is
OFF
(the default), logging is as just
described. When this variable is ON
,
logging occurs immediately for nontransactional statements
occurring anywhere in the transaction (not just initial
nontransactional statements). Other statements are kept in
the transaction cache and logged when the transaction
commits.
binlog_direct_non_transactional_updates
has no effect for row-format or mixed-format binary logging.
Transactional, nontransactional, and mixed statements. To apply those rules, the server considers a statement nontransactional if it changes only nontransactional tables, and transactional if it changes only transactional tables. A statement that references both nontransactional and transactional tables and updates any of the tables involved is considered a “mixed” statement. Mixed statements, like transactional statements, are cached and logged when the transaction commits.
A mixed statement that updates a transactional table is considered unsafe if the statement also performs either of the following actions:
Updates or reads a temporary table
Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ
A mixed statement following the update of a transactional table within a transaction is considered unsafe if it performs either of the following actions:
Updates any table and reads from any temporary table
Updates a nontransactional table and
binlog_direct_non_transactional_updates
is OFF
For more information, see Section 17.2.1.3, “Determination of Safe and Unsafe Statements in Binary Logging”.
A mixed statement is unrelated to mixed binary logging format.
In situations where transactions mix updates to transactional
and nontransactional tables, the order of statements in the
binary log is correct, and all needed statements are written to
the binary log even in case of a
ROLLBACK
.
However, when a second connection updates the nontransactional
table before the first connection transaction is complete,
statements can be logged out of order because the second
connection update is written immediately after it is performed,
regardless of the state of the transaction being performed by
the first connection.
Using different storage engines on master and slave.
It is possible to replicate transactional tables on the master
using nontransactional tables on the slave. For example, you
can replicate an InnoDB
master table as a
MyISAM
slave table. However, if you do
this, there are problems if the slave is stopped in the middle
of a BEGIN
... COMMIT
block because the
slave restarts at the beginning of the
BEGIN
block.
It is also safe to replicate transactions from
MyISAM
tables on the master to
transactional tables—such as tables that use the
InnoDB
storage engine—on the
slave. In such cases, an
AUTOCOMMIT=1
statement issued on the master is replicated, thus enforcing
AUTOCOMMIT
mode on the slave.
When the storage engine type of the slave is nontransactional, transactions on the master that mix updates of transactional and nontransactional tables should be avoided because they can cause inconsistency of the data between the master transactional table and the slave nontransactional table. That is, such transactions can lead to master storage engine-specific behavior with the possible effect of replication going out of synchrony. MySQL does not issue a warning about this, so extra care should be taken when replicating transactional tables from the master to nontransactional tables on the slaves.
Changing the binary logging format within transactions.
The binlog_format
and
binlog_checksum
system
variables are read-only as long as a transaction is in
progress.
Every transaction (including
autocommit
transactions) is
recorded in the binary log as though it starts with a
BEGIN
statement, and ends with either a
COMMIT
or a
ROLLBACK
statement. This is even true for statements affecting tables
that use a nontransactional storage engine (such as
MyISAM
).
For restrictions that apply specifically to XA transactions, see Section 13.3.8.3, “Restrictions on XA Transactions”.
With statement-based replication, triggers executed on the master also execute on the slave. With row-based replication, triggers executed on the master do not execute on the slave. Instead, the row changes on the master resulting from trigger execution are replicated and applied on the slave.
This behavior is by design. If under row-based replication the slave applied the triggers as well as the row changes caused by them, the changes would in effect be applied twice on the slave, leading to different data on the master and the slave.
If you want triggers to execute on both the master and the slave—perhaps because you have different triggers on the master and slave—you must use statement-based replication. However, to enable slave-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to statement-based replication only for those statements where you want this effect, and to use row-based replication the rest of the time.
A statement invoking a trigger (or function) that causes an
update to an AUTO_INCREMENT
column is not
replicated correctly using statement-based replication. MySQL
8.0 marks such statements as unsafe. (Bug #45677)
A trigger can have triggers for different combinations of
trigger event (INSERT
,
UPDATE
,
DELETE
) and action time
(BEFORE
, AFTER
), and
multiple triggers are permitted.
For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event and action time.”
Upgrades. Multiple triggers are not supported in versions earlier than MySQL 5.7. If you upgrade servers in a replication topology that use a version earlier than MySQL 5.7, upgrade the replication slaves first and then upgrade the master. If an upgraded replication master still has old slaves using MySQL versions that do not support multiple triggers, an error occurs on those slaves if a trigger is created on the master for a table that already has a trigger with the same trigger event and action time.
Downgrades. If you downgrade a server that supports multiple triggers to an older version that does not, the downgrade has these effects:
For each table that has triggers, all trigger definitions
are in the .TRG
file for the table.
However, if there are multiple triggers with the same
trigger event and action time, the server executes only one
of them when the trigger event occurs. For information about
.TRG
files, see the Table Trigger Storage
section of the MySQL Server Doxygen documentation, available
at https://dev.mysql.com/doc/index-other.html.
If triggers for the table are added or dropped subsequent to
the downgrade, the server rewrites the table's
.TRG
file. The rewritten file retains
only one trigger per combination of trigger event and action
time; the others are lost.
To avoid these problems, modify your triggers before downgrading. For each table that has multiple triggers per combination of trigger event and action time, convert each such set of triggers to a single trigger as follows:
For each trigger, create a stored routine that contains all
the code in the trigger. Values accessed using
NEW
and OLD
can be
passed to the routine using parameters. If the trigger needs
a single result value from the code, you can put the code in
a stored function and have the function return the value. If
the trigger needs multiple result values from the code, you
can put the code in a stored procedure and return the values
using OUT
parameters.
Drop all triggers for the table.
Create one new trigger for the table that invokes the stored routines just created. The effect for this trigger is thus the same as the multiple triggers it replaces.
TRUNCATE TABLE
is normally
regarded as a DML statement, and so would be expected to be
logged and replicated using row-based format when the binary
logging mode is ROW
or
MIXED
. However this caused issues when
logging or replicating, in STATEMENT
or
MIXED
mode, tables that used transactional
storage engines such as InnoDB
when
the transaction isolation level was READ
COMMITTED
or READ UNCOMMITTED
,
which precludes statement-based logging.
TRUNCATE TABLE
is treated for
purposes of logging and replication as DDL rather than DML so
that it can be logged and replicated as a statement. However,
the effects of the statement as applicable to
InnoDB
and other transactional
tables on replication slaves still follow the rules described in
Section 13.1.37, “TRUNCATE TABLE Statement” governing such tables. (Bug
#36763)
The maximum length of MySQL user names is 32 characters. Replication of user names longer than 16 characters to a slave earlier than MySQL 5.7 that supports only shorter user names will fail. However, this should occur only when replicating from a newer master to an older slave, which is not a recommended configuration.
System variables are not replicated correctly when using
STATEMENT
mode, except for the following
variables when they are used with session scope:
When MIXED
mode is used, the variables in the
preceding list, when used with session scope, cause a switch
from statement-based to row-based logging. See
Section 5.4.4.3, “Mixed Binary Logging Format”.
sql_mode
is also replicated
except for the
NO_DIR_IN_CREATE
mode; the
slave always preserves its own value for
NO_DIR_IN_CREATE
, regardless
of changes to it on the master. This is true for all replication
formats.
However, when mysqlbinlog parses a
SET @@sql_mode =
statement, the full
mode
mode
value, including
NO_DIR_IN_CREATE
, is passed to
the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT
mode
is in use.
The default_storage_engine
system variable is not replicated, regardless of the logging
mode; this is intended to facilitate replication between
different storage engines.
The read_only
system variable
is not replicated. In addition, the enabling this variable has
different effects with regard to temporary tables, table
locking, and the SET PASSWORD
statement in different MySQL versions.
The max_heap_table_size
system
variable is not replicated. Increasing the value of this
variable on the master without doing so on the slave can lead
eventually to Table is full errors on the
slave when trying to execute
INSERT
statements on a
MEMORY
table on the master that is
thus permitted to grow larger than its counterpart on the slave.
For more information, see
Section 17.5.1.21, “Replication and MEMORY Tables”.
In statement-based replication, session variables are not replicated properly when used in statements that update tables. For example, the following sequence of statements will not insert the same data on the master and the slave:
SET max_join_size=1000; INSERT INTO mytable VALUES(@@max_join_size);
This does not apply to the common sequence:
SET time_zone=...; INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));
Replication of session variables is not a problem when row-based replication is being used, in which case, session variables are always replicated safely. See Section 17.2.1, “Replication Formats”.
The following session variables are written to the binary log and honored by the replication slave when parsing the binary log, regardless of the logging format:
Even though session variables relating to character sets and collations are written to the binary log, replication between different character sets is not supported.
To help reduce possible confusion, we recommend that you always
use the same setting for the
lower_case_table_names
system
variable on both master and slave, especially when you are
running MySQL on platforms with case-sensitive file systems. The
lower_case_table_names
setting
can only be configured when initializing the server.
Views are always replicated to slaves. Views are filtered by
their own name, not by the tables they refer to. This means that
a view can be replicated to the slave even if the view contains
a table that would normally be filtered out by
replication-ignore-table
rules. Care should
therefore be taken to ensure that views do not replicate table
data that would normally be filtered for security reasons.
Replication from a table to a same-named view is supported using statement-based logging, but not when using row-based logging. Trying to do so when row-based logging is in effect causes an error.
MySQL supports replication from one release series to the next higher release series. For example, you can replicate from a master running MySQL 5.6 to a slave running MySQL 5.7, from a master running MySQL 5.7 to a slave running MySQL 8.0, and so on. However, you might encounter difficulties when replicating from an older master to a newer slave if the master uses statements or relies on behavior no longer supported in the version of MySQL used on the slave. For example, foreign key names longer than 64 characters are no longer supported from MySQL 8.0.
The use of more than two MySQL Server versions is not supported in replication setups involving multiple masters, regardless of the number of master or slave MySQL servers. This restriction applies not only to release series, but to version numbers within the same release series as well. For example, if you are using a chained or circular replication setup, you cannot use MySQL 8.0.1, MySQL 8.0.2, and MySQL 8.0.4 concurrently, although you could use any two of these releases together.
It is strongly recommended to use the most recent release available within a given MySQL release series because replication (and other) capabilities are continually being improved. It is also recommended to upgrade masters and slaves that use early releases of a release series of MySQL to GA (production) releases when the latter become available for that release series.
From MySQL 8.0.14, the server version is recorded in the binary
log for each transaction for the server that originally committed
the transaction
(original_server_version
), and
for the server that is the immediate master of the current server
in the replication topology
(immediate_server_version
).
Replication from newer masters to older slaves might be possible, but is generally not supported. This is due to a number of factors:
Binary log format changes. The binary log format can change between major releases. While we attempt to maintain backward compatibility, this is not always possible. A master might also have optional features enabled that are not understood by older slaves, such as binary log transaction compression, where the resulting compressed transaction payloads cannot be read by a slave at a release before MySQL 8.0.20.
This also has significant implications for upgrading replication servers; see Section 17.5.3, “Upgrading a Replication Setup”, for more information.
For more information about row-based replication, see Section 17.2.1, “Replication Formats”.
SQL incompatibilities. You cannot replicate from a newer master to an older slave using statement-based replication if the statements to be replicated use SQL features available on the master but not on the slave.
However, if both the master and the slave support row-based replication, and there are no data definition statements to be replicated that depend on SQL features found on the master but not on the slave, you can use row-based replication to replicate the effects of data modification statements even if the DDL run on the master is not supported on the slave.
For more information on potential replication issues, see Section 17.5.1, “Replication Features and Issues”.
When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on the current server versions and the version to which you are upgrading. This section provides information about how upgrading affects replication. For general information about upgrading MySQL, see Section 2.11, “Upgrading MySQL”
When you upgrade a master to 8.0 from an earlier MySQL release series, you should first ensure that all the slaves of this master are using the same 8.0.x release. If this is not the case, you should first upgrade the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 8.0.x version, restart it, and restart replication. Relay logs created by the slave after the upgrade are in 8.0 format.
Changes affecting operations in strict SQL mode
(STRICT_TRANS_TABLES
or
STRICT_ALL_TABLES
) may result in
replication failure on an upgraded slave. If you use
statement-based logging
(binlog_format=STATEMENT
), if a
slave is upgraded before the master, the nonupgraded master will
execute statements without error that may fail on the slave and
replication will stop. To deal with this, stop all new statements
on the master and wait until the slaves catch up. Then upgrade the
slaves. Alternatively, if you cannot stop new statements,
temporarily change to row-based logging on the master
(binlog_format=ROW
) and wait
until all slaves have processed all binary logs produced up to the
point of this change. Then upgrade the slaves.
The default character set has changed from
latin1
to utf8mb4
in MySQL
8.0. In a replicated setting, when upgrading from MySQL 5.7 to
8.0, it is advisable to change the default character set back to
the character set used in MySQL 5.7 before upgrading. After the
upgrade is completed, the default character set can be changed to
utf8mb4
. Assuming that the previous defaults
were used, one way to preserve them is to start the server with
these lines in the my.cnf
file:
[mysqld] character_set_server=latin1 collation_server=latin1_swedish_ci
After the slaves have been upgraded, shut down the master, upgrade it to the same 8.0.x release as the slaves, and restart it. If you had temporarily changed the master to row-based logging, change it back to statement-based logging. The 8.0 master is able to read the old binary logs written prior to the upgrade and to send them to the 8.0 slaves. The slaves recognize the old format and handle it properly. Binary logs created by the master subsequent to the upgrade are in 8.0 format. These too are recognized by the 8.0 slaves.
In other words, when upgrading to MySQL 8.0, the slaves must be MySQL 8.0 before you can upgrade the master to 8.0. Note that downgrading from 8.0 to older versions does not work so simply: You must ensure that any 8.0 binary log or relay log has been fully processed, so that you can remove it before proceeding with the downgrade.
Some upgrades may require that you drop and re-create database objects when you move from one MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such operations, if necessary, are detailed at Section 2.11.4, “Changes in MySQL 8.0”. It is safest to perform these operations separately on the slaves and the master, and to disable replication of these operations from the master to the slave. To achieve this, use the following procedure:
Stop all the slaves and upgrade them. Restart them with the
--skip-slave-start
option so
that they do not connect to the master. Perform any table
repair or rebuilding operations needed to re-create database
objects, such as use of REPAIR TABLE
or
ALTER TABLE
, or dumping and reloading
tables or triggers.
Disable the binary log on the master. To do this without
restarting the master, execute a SET sql_log_bin =
OFF
statement. Alternatively, stop the master and
restart it with the
--skip-log-bin
option. If you restart the master, you might also want to
disallow client connections. For example, if all clients
connect using TCP/IP, enable the
skip_networking
system
variable when you restart the master.
With the binary log disabled, perform any table repair or rebuilding operations needed to re-create database objects. The binary log must be disabled during this step to prevent these operations from being logged and sent to the slaves later.
Re-enable the binary log on the master. If you set
sql_log_bin
to
OFF
earlier, execute a SET
sql_log_bin = ON
statement. If you restarted the
master to disable the binary log, restart it without
--skip-log-bin
,
and without enabling the
skip_networking
system
variable so that clients and slaves can connect.
Restart the slaves, this time without the
--skip-slave-start
option.
If you are upgrading an existing replication setup from a version of MySQL that does not support global transaction identifiers to a version that does, you should not enable GTIDs on either the master or the slave before making sure that the setup meets all the requirements for GTID-based replication. See Section 17.1.3.4, “Setting Up Replication Using GTIDs”, which contains information about converting existing replication setups to use GTID-based replication.
Prior to MySQL 8.0.16, when the server is running with global
transaction identifiers (GTIDs) enabled
(gtid_mode=ON
), do not enable
binary logging by mysql_upgrade (the
--write-binlog
option). As
of MySQL 8.0.16, the server performs the entire MySQL upgrade
procedure, but disables binary logging during the upgrade, so
there is no issue.
It is not recommended to load a dump file when GTIDs are enabled
on the server (gtid_mode=ON
), if
your dump file includes system tables.
mysqldump issues DML instructions for the
system tables which use the non-transactional MyISAM storage
engine, and this combination is not permitted when GTIDs are
enabled. Also be aware that loading a dump file from a server with
GTIDs enabled, into another server with GTIDs enabled, causes
different transaction identifiers to be generated.
If you have followed the instructions but your replication setup is not working, the first thing to do is check the error log for messages. Many users have lost time by not doing this soon enough after encountering problems.
If you cannot tell from the error log what the problem was, try the following techniques:
Verify that the master has binary logging enabled by issuing a
SHOW MASTER STATUS
statement.
Binary logging is enabled by default. If binary logging is
enabled, Position
is nonzero. If binary
logging is not enabled, verify that you are not running the
master with any settings that disable binary logging, such as
the
--skip-log-bin
option.
Verify that the server_id
system variable was set at startup on both the master and
slave and that the ID value is unique on each server.
Verify that the slave is running. Use
SHOW SLAVE STATUS
to check
whether the Slave_IO_Running
and
Slave_SQL_Running
values are both
Yes
. If not, verify the options that were
used when starting the slave server. For example,
--skip-slave-start
prevents the
slave threads from starting until you issue a
START SLAVE
statement.
If the slave is running, check whether it established a
connection to the master. Use SHOW
PROCESSLIST
, find the I/O and SQL threads and check
their State
column to see what they
display. See
Section 17.2.2, “Replication Implementation Details”. If the
I/O thread state says Connecting to master
,
check the following:
Verify the privileges for the user being used for replication on the master.
Check that the host name of the master is correct and that
you are using the correct port to connect to the master.
The port used for replication is the same as used for
client network communication (the default is
3306
). For the host name, ensure that
the name resolves to the correct IP address.
Check the configuration file to see whether the
skip_networking
system
variable has been enabled on the master or slave to
disable networking. If so, comment the setting or remove
it.
If the master has a firewall or IP filtering configuration, ensure that the network port being used for MySQL is not being filtered.
Check that you can reach the master by using
ping
or
traceroute
/tracert
to reach the host.
If the slave was running previously but has stopped, the reason usually is that some statement that succeeded on the master failed on the slave. This should never happen if you have taken a proper snapshot of the master, and never modified the data on the slave outside of the slave thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known replication limitations described in Section 17.5.1, “Replication Features and Issues”. If it is a bug, see Section 17.5.5, “How to Report Replication Bugs or Problems”, for instructions on how to report it.
If a statement that succeeded on the master refuses to run on the slave, try the following procedure if it is not feasible to do a full database resynchronization by deleting the slave's databases and copying a new snapshot from the master:
Determine whether the affected table on the slave is
different from the master table. Try to understand how
this happened. Then make the slave's table identical to
the master's and run START
SLAVE
.
If the preceding step does not work or does not apply, try to understand whether it would be safe to make the update manually (if needed) and then ignore the next statement from the master.
If you decide that the slave can skip the next statement from the master, issue the following statements:
mysql>SET GLOBAL sql_slave_skip_counter =
mysql>N
;START SLAVE;
The value of N
should be 1 if
the next statement from the master does not use
AUTO_INCREMENT
or
LAST_INSERT_ID()
.
Otherwise, the value should be 2. The reason for using a
value of 2 for statements that use
AUTO_INCREMENT
or
LAST_INSERT_ID()
is that
they take two events in the binary log of the master.
If you are sure that the slave started out perfectly synchronized with the master, and that no one has updated the tables involved outside of the slave thread, then presumably the discrepancy is the result of a bug. If you are running the most recent version of MySQL, please report the problem. If you are running an older version, try upgrading to the latest production release to determine whether the problem persists.
When you have determined that there is no user error involved, and replication still either does not work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible from you to be able to track down the bug. Please spend some time and effort in preparing a good bug report.
If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have a “phantom” problem (one that you cannot duplicate at will), use the following procedure:
Verify that no user error is involved. For example, if you update the slave outside of the slave thread, the data goes out of synchrony, and you can have unique key violations on updates. In this case, the slave thread stops and waits for you to clean up the tables manually to bring them into synchrony. This is not a replication problem. It is a problem of outside interference causing replication to fail.
Ensure that the slave is running with binary logging enabled
(the log_bin
system
variable), and with the
--log-slave-updates
option
enabled, which causes the slave to log the updates that it
receives from the master into its own binary logs. These
settings are the defaults.
Save all evidence before resetting the replication state. If we have no information or only sketchy information, it becomes difficult or impossible for us to track down the problem. The evidence you should collect is:
All binary log files from the master
All binary log files from the slave
The output of SHOW MASTER
STATUS
from the master at the time you
discovered the problem
The output of SHOW SLAVE
STATUS
from the slave at the time you discovered
the problem
Error logs from the master and the slave
Use mysqlbinlog to examine the binary logs.
The following should be helpful to find the problem statement.
log_file
and
log_pos
are the
Master_Log_File
and
Read_Master_Log_Pos
values from
SHOW SLAVE STATUS
.
shell> mysqlbinlog --start-position=log_pos
log_file
| head
After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then enter the problem with as much information as possible into our bugs database using the instructions at Section 1.7, “How to Report Bugs or Problems”.